Аннотация: Операторные уравнения и смежные вопросы устойчивости дифференциальных уравнений
Монография посвящена приложению методов функционального анализа к вопросам качественной теории дифференциальных уравнений. Изложен алгоритм приведения дифференциальной краевой задачи к операторному уравнению. Выполнено исследование решений операторных уравнений специального вида в пространствах, полуупорядоченных при помощи конуса, где ограниченность элементов этих пространств понимается как сравнимость их с определенным фиксированным масштабным элементом экспоненциального типа. Найдены представления решений операторных уравнений в виде контурных интегралов, доказаны теоремы существования и единственности таких решений. Получены спектральные критерии ограниченности решений операторных уравнений и, как следствие, достаточные спектральные признаки ограниченности решений дифференциальных и дифференциально-разностных уравнений в банаховом пространстве. Результаты, полученные для операторных уравнений с операторами и произведением вольтерровых операторов, позволили распространить на некоторые системы уравнений в частных производных известные спектральные критерии устойчивости решений по А.М. Ляпунову, а также обобщить теоремы об экспоненциальной характеристике. Результаты монографии могут быть полезны при изучении линейных механических и электрических систем, в задачах дифракции электромагнитных волн, в вопросах теории автоматического управления и др. Предназначена для научных работников, аспирантов, студентов, изучающих функциональный анализ и его приложения к операторным и дифференциальным уравнениям.
Автор/составитель | Жукова Галина Севастьяновна, Орлик Любовь Константиновна |
Серия | Высшее образование. Бакалавриат |
Год выпуска | 2020 |
ISBN | 978-5-16-015846-4 |
Производитель | Инфра-М |
Издательство | Инфра-М |
Количество томов | 1 |
Количество страниц | 296 |
Переплет | Мягкая обложка |
Размеры | 205x140x13 мм |
Цвет | Белый |
Тип бумаги | офсетная (60-220 г/м2) |
Формат | 60x90/16 (145x215 мм) |
Стандарт | 1 |
Вес | 284 |
Язык | русский |