Содержание

Введение	0
Принятые сокращения	7
Глава 1. Цели, задачи и содержание ТПП	8
1.1. Обеспечение технологичности конструкций изделий	10
Контрольные вопросы	15
Глава 2. Стадии разработки технологической документации	16
Контрольные вопросы	19
Глава 3. Виды технологических процессов	20
3.1. Классификация и определение видов технологических процессов	20
3.1.1. Единичные технологические процессы	21
3.1.2. Групповые технологические процессы	21
3.1.3. Типовые технологические процессы	23
Контрольные вопросы	24
Глава 4. Разработка и применение технологических процессов	25
4.1. Основные требования к разработке технологических процессов	25
4.2. Исходная информация для разработки технологических процессов	27
4.3. Этапы разработки технологических процессов	27
4.4. Применение технологических процессов	28
Контрольные вопросы	38
Глава 5. Виды документов	39
Контрольные вопросы	44
Глава 6. Форматы	45
Контрольные вопросы	46
Глава 7. Состав, формы и правила оформления информационных блоков	
основной надписи	47
7.1. Правила расположения поля подшивки на формах документов	50
7.2. Правила расположения блоков основной надписи на формах документов	50
Контрольные вопросы	
Глава 8. Формы и правила оформления титульного листа	
8.1. Примеры оформления титульного листа	
Контрольные вопросы	63
	03

Глава 9. Формы и правила оформления технологической инструкции	64
9.1. Пример оформления технологической инструкции	66
Контрольные вопросы	69
Глава 10. Формы и правила оформления карты эскизов	70
10.1. Общие правила выполнения графических технологических	70
1 1	71
документов 10.2. Правила выполнения эскизов	71 71
10.3. Пример оформления карты эскизов на сварку	71
Контрольные вопросы	78 79
Глава 11. Формы и правила оформления маршрутных карт	
11.1. Правила применения	80
11.2. Правила оформления	82
Маршрутная карта (первый или заглавный лист)	
Маршрутная карта (оборотная сторона)	
Маршрутная карта (последующие листы)	
Маршрутная карта (первый или заглавной лист)	
11.3. Пример оформления маршрутной карты на сварку	88
Контрольные вопросы	89
Глава 12. Формы и требования к заполнению и оформлению документов на	
технологические процессы (операции), специализированные по методам сборки	90
12.1. Формы и требования к заполнению документов	90
12.2. Требования к заполнению и оформлению типовых блоков	
режимов, применяемых в документах на сварку и пайку	98
12.3. Требования к оформлению документов	101
12.4. Правила записи операций и переходов. Сварка	107
12.5. Примеры записи операций и переходов. Сварка	108
Контрольные вопросы	108
Глава 13. Требования к комплектности и оформлению комплектов документов	
на типовые и групповые технологические процессы (операции)	109
13.1. Требования к комплектности документов на типовые и групповые	
технологические процессы (операции)	110
13.2. Требования к оформлению комплектов документов на типовые	
(групповые) технологические процессы (операции)	112
Контрольные вопросы	
Глава 14. Контроль технологических процессов	118
14.1. Порядок проведения работ по контролю технологических процессо	
Контрольные вопросы	121
TEOTIT POSTBILLIO DOTTPOSDI	141

Глава 15. Автоматизированное проектирование технологических процессов	
15.1. Описание программных продуктов, применяемых в САПР ТП	123
15.2. «Вертикаль»	124
15.3. Timeline	
15.4. TECHCARD	
15.5. TechnologiCS	
15.6. ADEM	
15.7. СПРУТ-ТП	135
Термины и определения основных понятий	137
Список литературы	144

Введение

Современные экономические условия предъявляют высокие требования к квалификации инженеров-технологов. Они должны быть специалистами, способными решать различные технические, организационные, экономические и социальные задачи производства. Поэтому в основу подготовки таких специалистов должна быть положена интеграция научной, производственной и образовательной деятельности. Учебное пособие построено на основе системного подхода к образовательному процессу. Однако разнообразие задач, встречающихся в практике инженера-технолога, не позволяет охватывать все виды их деятельности в одном учебном пособии, поэтому здесь рассмотрены задачи, навыки решения которых в первую очередь должны иметь инженеры-технологи современного машиностроительного производства. Учебное пособие содержит основные материалы, необходимые для проектирования технологических процессов литья, штамповки, термической обработки и сварки, выбора типа и организационной формы производства, степени детализации процесса, разработки технологического маршрута, операционных карт и режимов обработки. Приводятся методические указания по оформлению технологической документации в соответствии с действующими стандартами. Каждая тема пособия включает в себя теоретическую часть, примеры решения типовых задач и вопросы для самопроверки. Приведен словарь терминов и определений. Структура учебного пособия способствует приобретению навыков проектирования оптимальных технологических процессов.

Изложенные материалы и рассмотренные примеры позволяют совершенствовать методику курсового и дипломного проектирования по направлению «Машиностроение», «Материаловедение и технологии новых материалов». Некоторые разделы пособия могут быть полезны магистрантам и аспирантам, а также инженерам-технологам машиностроительных предприятий при решении производственных задач, связанных с проектированием технологических процессов изготовления деталей и сборки.

Принятые сокращения

АЦПУ — алфавитно-цифровое печатающее устройство

ВМ — ведомость материалов

ВО — ведомость оснастки

ВТП — ведомость технологического процесса

ВТО — ведомость деталей к типовой операции

ДСЕ — деталь сборочных единиц

ЕСКД — Единая система конструкторской документации

ЕСТПП — Единая система технологической подготовки производства

ЕСТД — Единая система технологической документации

ЕСГ УКП — Единая система государственного управления качеством продукции

ЕТП (ГТП, ТТП) — единичный (групповой, типовой) технологический процесс

ИОТ — инструкция по охране труда

КТП — карта технологического процесса

KTO — карта типовой операции

КТИ — карта технологической информации

КЭ — карта эскиза

КТТП (КГТП) — карта типового (группового) технологического процесса

МК — маршрутная карта

НТД — научно-технический документ

ОГМЕТ — отдел главного металлурга

ОГТ — отдел главного технолога

ОК — операционная карта

РТП — рабочий технологический процесс

САПР ТП — системы автоматизированного проектирования технологических процессов

ССБТ — система стандартов безопасности труда

СТП — стандарт предприятия

СТО — средства технологического оснащения

ТИ — технологическая инструкция

ТЛ — титульный лист

ТКД — технологический классификатор деталей

ТП — технологический процесс

ТПП — технологическая подготовка производства

ТТО (ТГО) — типовая (групповая) технологическая операция

ТЭИ — технико-экономическая информация

ГЛАВА І

ЦЕЛИ, ЗАДАЧИ И СОДЕРЖАНИЕ ТПП

Основной целью ТПП является обеспечение высокой эффективности производства изделий требуемого качества и количества в установленные сроки и в соответствии с заданными технико-экономическими показателями, устанавливающими технический уровень изделия и минимальные трудовые и материальные затраты.

С помощью ТПП обеспечивается мобильность производства при изготовлении программы выпуска и освоении новых изделий. Работы по ТПП ведутся в двух направлениях: 1) текущая технологическая подготовка, связанная непосредственно с обеспечением технологической готовности производства; 2) разработка методов, обеспечивающих сокращение длительности и трудоемкости ТПП

ТПП ведется на двух уровнях: на уровне предприятия и на уровне отрасли машиностроения. Во втором случае результатами разработок являются методические материалы, которыми может воспользоваться любое машиностроительное предприятие.

ТПП — сложный и трудоемкий процесс. Его можно разделить на две стадии: 1) проектно-технологические работы по созданию нового или реконструкции и техническому перевооружению действующего производства; 2) текущая технологическая подготовка действующего производства. К выполнению работ привлекают специалистов проектно-технологических институтов и инжиниринговых фирм. На основе предпроектного обследования принимается решение о реконструкции или перевооружении.

Техническое перевооружение — это: 1) внедрение в производство новых технологических процессов; 2) использование на ряде мест нового оборудования; 3) совершенствование структуры и организации работы производственных участков; 4) изменение количества оборудования и его расположения; 5) внедрение механизации и автоматизации производства на действующих площадях.

Реконструкция производства дополнительно предусматривает расширение действующих цехов или создание новых производственных зданий.

Разработанные решения, определяющие основные направления технического перевооружения и реконструкции производства, утвержденные

руководством предприятия и инвесторами, оформляют в виде задания на проектирование. В ходе разработки проектов технического перевооружения или реконструкции участков, цехов и предприятия в целом решается комплекс взаимосвязанных вопросов технологического, организационного и строительного проектирования.

 $T\Pi\Pi$ в зависимости от типа производства различается степенью детализации. Чем больше серийность производства, тем подробнее проводится $T\Pi\Pi$ и тщательнее разрабатываются технологические процессы.

Полученные в результате разработки ТПП данные о трудоемкости далее используют для основных технологических расчетов и обоснования проектных решений по количеству оборудования и числу рабочих мест, по составу и структуре оборудования производственных участков и линий. Очень важными вопросами в технологической подготовке технического перевооружения и реконструкции производства являются выбор вариантов и разработка детальных планов расположения оборудования и рабочих мест, а также определение численности работающих.

При разработке проектов реконструкции производства возникает необходимость строительного проектирования, а также более углубленной проработки энергетической и санитарно-технической части проекта. К выполнению этих работ обычно привлекают специализированные проектные организации, которые разрабатывают объемно-планировочные решения и собирают необходимые расчетные данные, содержащиеся в технологической части проекта.

ТПП на уровне предприятия включает решение задач, которые группируются по следующим основным функциям:

- 1) обеспечение технологичности конструкции изделий;
- 2) разработка технологических процессов;
- 3) проектирование и изготовление средств технологического оснащения (СТО);
 - 4) контроль и управление технологическими процессами.

Под функцией понимается комплекс задач по технологической подготовке производства, объединенных общей целью их решения. Задачами функции обеспечения технологичности конструкции изделия являются:

- а) проведение технологического контроля конструкторской документации;
- б) оценка уровня технологичности конструкции изделия;
- в) отработка конструкции изделия на технологичность;
- г) внесение необходимых изменений в конструкцию изделия и документацию.

Задачами функции разработки технологических процессов являются:

а) разработка, стандартизация и применение типовых технологических процессов и операций на сборочные единицы и детали;

- б) разработка и применение рабочих технологических процессов на сборочные единицы и детали;
- в) организация на уровне предприятия фондов документации на типовые технологические процессы и операции.

Задачами функции проектирования и изготовления средств технологического оснашения являются:

- а) проведение унификации и стандартизации СТО;
- б) организация применения СТО, в том числе унифицированных и стандартных средств, использование баз проката СТО;
 - в) проектирование и изготовление специальных СТО.

Основными задачами функции организации контроля и управления технологическими процессами являются:

- 1) сравнение заданных и фактических значений параметров качества изделий;
 - 2) анализ причин отклонений параметров качества изделий;
- 3) принятие технологических решений о ликвидации возникших отклонений параметров качества изделий;
- 4) разработка и внедрение в производство мероприятий, обеспечивающих стабилизацию параметров качества изделий.

І.І. Обеспечение технологичности конструкций изделий

Технологичность — это совокупность свойств конструкций изделия, определяющих ее приспособленность к достижению оптимальных затрат при производстве, эксплуатации и ремонте при заданных показателях качества, объема выпуска и условиях выполнения работ. Чем меньше трудоемкость и себестоимость изготовления, тем более технологичной является конструкция детали.

Обеспечение технологичности конструкции изделия — комплекс взаимосвязанных мероприятий по управлению технологичностью и совершенствованию условий выполнения работ при производстве, техническом обслуживании и ремонте изделий.

Основные задачи, решаемые при выполнении указанной функции ТПП (рис. 1), относятся к наиболее трудноформализуемым задачам ТПП. Для их решения нет достаточно разработанного математического аппарата, строгих формальных методик. Результат решения в значительной мере зависит от опыта, знаний и творческой интуиции формирующих его специалистов.

Каждую из указанных на рис. 1 задач можно решать для конструкции заготовки, детали, сборочной единицы и изделия в целом.

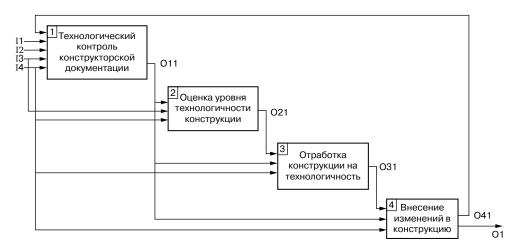


Рис. 1. Информационная структура функции ТПП «Обеспечение технологичности конструкции изделия»: I1, I2 — конструкторская документация на изделие и директивную заготовку соответственно; I3 — программа выпуска изделий; I4 — информационное обеспечение; O11 — конструкторская документация, прошедшая технологический контроль; O21 — результаты оценки уровня технологичности конструкции; O31 — предложения об изменении конструкции изделия; O41 — чертежи изделия с внесенными изменениями; O1 — чертежи изделия, отработанного на технологичность

Технологический контроль конструкторской документации на изделие имеет целью выявление степени ее соответствия реальным производственно-технологическим условиям изготовления изделия.

Для оценки уровня технологичности конструкции в информационном обеспечении должны быть представлены выбранные показатели технологичности. Формирование их номенклатуры является самостоятельной, сложной и неоднозначно решаемой задачей.

Базовые значения показателей, необходимые для оценки уровня технологичности разрабатываемой конструкции, указывают в техническом задании на разработку изделия, а для отдельных видов изделий, номенклатура которых установлена по отраслям, — в отраслевых стандартах. Существует два способа задания таких показателей. Во-первых, базовые значения могут быть заданы как множество предельных нормативов, обязательных для выполнения в разрабатываемом изделии. Конкретного (базового) изделия, обладающего набором значений показателей технологичности, при этом не задают. Во-вторых, базовые значения показателей можно взять с конкретного (базового) изделия, принятого за ближайший прототип разрабатываемого изделия.

Число и состав показателей технологичности конструкции разрабатываемого изделия, используемых для определения уровня технологичности, и состав

базовых показателей должны полностью совпадать. Технологичной считается конструкция, значения показателей технологичности которой совпадают с базовыми показателями или превосходят их [1, 2]. Если желательным направлением изменения показателя K_i технологичности является его минимизация, то должно соблюдаться условие

$$K_{i\delta} \ge K_{ip}$$

если же желательным направлением изменения показателя \mathbf{K}_{i} является его максимизация, — то

$$K_{i\delta} \leq K_{ip}$$

где K_{i6} , p — значения показателя K_i у базового и разрабатываемого изделия.

Уровень технологичности $\mathbf{K}_{\!\scriptscriptstyle{\mathrm{yi}}}$ разрабатываемого изделия по показателю $\mathbf{K}_{\!\scriptscriptstyle{\mathrm{i}}}$ будет

$$K_{vi} = K_{in}/K_{i6}$$

Значение K_{yi} при подготовке к отработке конструкции на технологичность в относительных единицах показывает требуемое направление проведения конструкторско-технологических мероприятий.

Базовое изделие, принимаемое за ближайший прототип для сравнения с разрабатываемым, должно отвечать следующим требованиям [3]:

- а) быть возможно более близким к разрабатываемому изделию по времени разработки, служебному назначению, основным эксплуатационным показателям;
- б) по возможности отвечать последним достижениям (мировому уровню) техники.

В отличие от функций ТПП, выполняемых до начала непосредственного производства изделия, указанная функция реализуется при производстве изделия в реальном масштабе времени.

В соответствии с перечисленными функциями структура системы ТПП имеет вид, представленный на рис. 2, и отражает основные информационнофункциональные связи.

Входными данными системы являются конструкторская документация на изделие, конструкторская документация на директивную заготовку, программа выпуска изделий, информационное обеспечение [4].

Рис. 2. Системы ТПП

Выходными данными системы ТПП являются соответствующие технологические и конструкторские документы, к основным из которых относятся:

- 1) чертежи изделий (деталей, сборочных единиц), отработанных на технологичность;
 - 2) чертеж заготовки;
 - 3) технологический процесс изготовления заготовки;
 - 4) заказ на изготовление заготовки;
 - 5) технологический процесс изготовления деталей и сборки;
 - 6) изменения конструкций деталей и сборочных единиц;
 - 7) заказ на СТО;
 - 8) чертежи СТО;
 - 9) изменения технологического процесса изготовления деталей и сборки.

Информационное обеспечение ТПП делится на две группы: инвариантное функциям ТПП и функционально-ориентированное.

Первая группа содержит:

- 1) данные об имеющемся технологическом оборудовании, используемых технологических методах и процессах, производственных площадях и их загрузке, технологической оснастке и других имеющихся в наличии ресурсах производства;
- 2) текущие технико-экономические показатели предприятия и данные об экономической ситуации на рынке выпускаемой предприятием продукции;
- 3) данные о реальных конструктивно-технологических параметрах поступивших заготовок и уже выпущенных изделий, полученные по результатам входного контроля заготовок и приемочного контроля изделий (например опытной партии);
- 4) оперативную информацию о ходе реализованных технологических процессов, включающую данные операционного контроля технологического процесса или обрабатываемой заготовки после завершения определенной технологической операции;
 - 5) общие методы принятия технологических решений и их оптимизации.

Ко второй группе относятся:

- 1) правила выбора показателей и обеспечения технологичности конструкции изделий, сборочных единиц, деталей для функции обеспечения технологичности конструкции изделий;
- 2) правила выбора вида, метода изготовления и конструирования исходных заготовок для функции выбора и подготовки заготовок;
- 3) правила разработки, организации и применения технологического процесса, правила выбора СТО для функции разработки технологического процесса;
 - 4) правила проектирования для функции проектирования СТО;

5) методы выявления причин отклонений хода технологического процесса, методы и правила принятия и реализации технологических решений по ликвидации отклонений в ходе технологического процесса — для функции контроля и управления.

Работы по ТПП на уровне предприятия обычно сосредоточены в отделе главного технолога (ОГТ) и технологических бюро цехов.

Составление технологической документации входит в обязанности специализированных технологических бюро ОГТ. Планирование технической (конструкторской и технологической) подготовки производства осуществляет специальная группа (бюро), подчиняющаяся непосредственно главному инженеру (техническому директору). Цеховые технологические бюро продолжают работу ОГТ, занимаясь в основном внедрением переданной им технологии в производство, инструктируя рабочих при ее освоении, помогая совершенствовать приемы и методы работы, выявляя степень экономической целесообразности применяемой оснастки и т. п.

Распределение работ по ТПП между ОГТ и цеховым технологическим бюро зависит прежде всего от типа производства.

На заводах единичного и мелкосерийного производства технологическая подготовка ведется децентрализованно. Общее методическое руководство ТПП осуществляет ОГТ или ОГМЕТ (отдел главного металлурга). Проведение работ по ТПП полностью возлагается на технологические бюро цехов.

На заводах крупносерийного и массового производства все работы ведут централизованно в ОГТ и ОГМЕТ, а цеховым технологическим бюро осуществляются внедрение разработанных технологических процессов, их корректировка и контроль, последующая рационализация.

На заводах со среднесерийным выпуском продукции при ее различных объемах встречается смешанная система организации ТПП, при которой для объектов устойчивой номенклатуры ТПП ведут централизованно, а для часто сменяемых изделий — децентрализованно (в цехах).

При централизованной организации ТПП службы ОГТ, как правило, специализируются по видам работ: бюро механической обработки, бюро покрытий и термической обработки и т. п.

В зависимости от типа производства, сложности изготовляемых изделий и уровня предъявляемых к ним требований ТПП проводят с различной степенью детализации. В условиях массового и крупносерийного производства, а также при изготовлении единичных экземпляров сложных ответственных изделий ТПП необходимо вести особенно тщательно. При серийном, мелкосерийном и единичном типах производства простых и недорогих изделий ТПП может быть ограничена предварительной разработкой минимально необходимых технологических и конструкторских документов и данных, а их конкретизация и детализация поручаются работникам цеховых технологических служб.

Насколько грамотно будет организована ТПП и широко будут использоваться современные достижения в области техники и технологии, а также применяться современные средства механизации и автоматизации инженерного труда, настолько эффективна будет сама ТПП.

В целях поднятия уровня организации, качества и эффективности ТПП была создана Единая система технологической подготовки производства (ЕСТПП).

ЕСТПП — это установленная государственными стандартами система организации и управления процессом технологической подготовки производства, предусматривающая применение прогрессивных типовых технологических процессов, стандартной технологической оснастки и оборудования, средств механизации и автоматизации производственных процессов, инженерно-технических и управленческих работ. В ЕСТПП изложены единые правила, по которым должна осуществляться ТПП; знание этих правил позволяет эффективно организовывать и управлять ТПП.

Документацию на методы и средства ТПП разрабатывают в соответствии с требованиями Государственной системы стандартизации, ЕСТПП, в том числе Единой системы конструкторской документации (ЕСКД), Единой системы технологической документации (ЕСТД), Единой системы классификации и кодирования технико-экономической информации; Единой системы государственного управления качеством продукции (ЕСГ УКП) и др.

Порядок формирования и применения документации на методы и средства ТПП определяется отраслевыми стандартами, стандартами предприятий и документацией, разработанной в соответствии со стандартами ЕСТПП.

Контрольные вопросы

- 1. Основные задачи ТПП.
- 2. Что включает информационное обеспечение ТПП?
- 3. Опишите структуру ТПП.
- 4. В чем отличие перевооружения от реконструкции предприятия?
- 5. Перечислите основные функции ТПП.
- 6. Задачи функции обеспечения технологичности конструкций.
- 7. Задачи функции разработки технологических процессов.
- 8. Задачи функции проектирования и изготовления СТО.
- 9. Задачи функции организации и контроля технологическими процессами.
- 10. Кто осуществляет ТПП на предприятии?