ВВЕДЕНИЕ

Эта книга адресована учащимся 10-11 классов для подготовки к единому государственному экзамену. Материал данного пособия представлен в виде разделов, соответствующих основным темам школьного курса математики, присутствующим в ЕГЭ. Для каждой темы предложены задания части 1 и части 2 базового и профильного уровней, а также обобщающие контрольные работы. К заданиям части 2 даются указания. Ко всем заданиям приведены ответы.

Тренировочные задания позволят учащимся систематически, при прохождении каждой темы, готовиться к этому экзамену. Достаточно будет в 10-11 классах решать задания из этого пособия параллельно с темой, изучаемой на школьных уроках математики, а в конце 11 класса, в качестве повторения, — варианты ЕГЭ по математике.

Данное пособие может использоваться совместно с любым учебником алгебры и начала анализа для 10—11 классов. С учебниками А.Г. Мордковича, Ш.А. Алимова и др., А.Н. Колмогорова — в полном объёме. С учебниками других авторов (Н.Я. Виленкина, М.И. Башмакова) — с исключением некоторых заданий, с которыми в момент изучения темы учащиеся ещё незнакомы. После изучения соответствующего материала, на этапе обобщающего повторения, к этим заданиям можно вернуться.

Книга также будет полезна *учителям математики*, так как даёт возможность эффективно организовать подготовку учащихся к единому государственному экзамену непосредственно на уроках, в процессе изучения всех тем. Можно предложить несколько вариантов работы:

- включение заданий тестового характера в систему заданий для 10-11 классов вместе со стандартными упражнениями учебника;
- использование заданий и контрольных работ на этапе обобщающего повторения по каждой теме или на этапе итогового повторения и подготовки к ЕГЭ в конце 11 класса;
 - контроль и коррекция знаний учащихся.

В структуре экзаменационной работы выделены две части, которые различаются по содержанию, форме записи ответа, степени сложности и числу заданий.

В данном учебном пособии также представлены две группы заданий. Формы записи ответов для разных заданий соответствуют формулировкам заданий в ЕГЭ.

Для каждого из заданий **части 1** ответом может являться целое число или число, записанное в виде десятичной дроби. Единицы измерений не пишут. В этом разделе содержатся задания базового уровня по материалу курса «Алгебра и начала анализа», а также задания из различных разделов математики с 5 по 11 класс.

Задания **части 2** требуют развёрнутого ответа. При оформлении решений обращают внимание на правильную запись хода решения, наличие обоснований и верный ответ. В эту группу включаются самые сложные задания по геометрии и алгебре 7—11 классов повышенного и высокого уровней сложности.

Надеемся, что данное пособие поможет учителям математики эффективно организовать подготовку к ЕГЭ на своих уроках, а старшеклассникам — систематизировать знания по математике, самостоятельно подготовиться к экзамену и успешно его сдать.

І. ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ ПО КУРСУ МАТЕМАТИКИ (10—11 классы)

1. ТРИГОНОМЕТРИЯ

1.1. Преобразования тригонометрических выражений

Содержание, проверяемое заданиями: соотношения между тригонометрическими функциями одного аргумента, формулы сложения, формулы двойного угла, формулы приведения.

Часть 1

Базовый уровень

Ответом к заданиям 1–38 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы. Единицы измерений писать не нужно.

1	Найдите значение выражения $3 \mathrm{sin}^2 \alpha + 10 + 3 \mathrm{cos}^2 \alpha$.
	Ответ:
2	Найдите значение выражения $16-6\sin^2\!\beta-6\cos^2\!\beta$.
3	Ответ: Вычислите: $\cos^2 \! 15^\circ + \cos^2 \! 75^\circ.$
<u> </u>	Ответ:
4	Вычислите: $\cos^2 15^\circ - \sin^2 75^\circ$.
5	Ответ: Упростите выражение $\dfrac{\sin 4 \beta}{\cos 2 \beta} - 2 \sin 2 \beta + \ 0,29.$
.	соs 2β Ответ:
6	Вычислите: $\left(\sin^2\frac{x}{2}-\cos^2\frac{x}{2}\right)\cdot\sqrt{3}$ при $x=\frac{5\pi}{6}$.
	Ответ:
7	Дано: $\cos\beta = 0.8$ и $\frac{3\pi}{2} < \beta < 2\pi$. Найдите: $\sin\beta$.

Ответ: _____

 $\fbox{8}$ Дано: $ageta=rac{7}{24}$ и $180^\circ<eta<270^\circ$. Найдите: \coseta .

Ответ: ______.

Ответ: ______.

10 Дано: $\cos \alpha = -0.6$, $\frac{\pi}{2} < \alpha < \pi$; $\sin \beta = -0.6$,

 $\frac{3\pi}{2}$ < β < 2π . Найдите: $\sin(\alpha - \beta)$.

Ответ: ______.

11 Дано: $\cos \alpha = -0.6$, $\frac{\pi}{2} < \alpha < \pi$; $\sin \beta = -0.6$,

 $\frac{3\pi}{2}$ < β < 2π . Найдите: $\cos(\alpha + \beta)$.

Ответ: ______.

12 Найдите значение выражения $\cos\left(\frac{3\pi}{2}+\beta\right)$, если $\sin\beta=0.11$.

Ответ: ______.

13 Найдите значение выражения $\sin(180^\circ - \beta)$, если $\sin\beta = -0.24$.

Ответ:

 $\fbox{14}$ Найдите значение выражения $\sin(270^\circ - \beta)$, если $\cos\beta = -0.41$.

Профильный уровень

15	Найдите значение	выражения	$\cos(\beta -$	270°),	если	$\sin\beta$ =	= 0,59.
	Ответ:						

$$17$$
 Найдите значение выражения $\cos^2\!\left(\alpha-\frac{3}{2}\pi\right)$ если $\sin\alpha=0,2.$

если
$$ctg\alpha = 8$$
.

19 Найдите значение выражения
$$\frac{\sin\left(\frac{9}{2}\pi-\alpha\right)-\cot g(5\pi+\alpha)}{\sin(\pi-\alpha)-1},$$
если $tg\alpha=0.25.$

20 Найдите значение выражения
$$\sin(\alpha - \beta) + 2\cos\alpha\sin\beta$$
, если $\sin(\alpha + \beta) = 0.17$. Ответ: ______.

Найдите значение выражения
$$\cos(\alpha+\beta)+2\sin\alpha\sin\beta$$
, если $\cos(\alpha-\beta)=0.64$. Ответ: ______.

23 Найдите значение выражения

$$\left(\frac{\cos(\alpha-\beta)-2\cos\alpha\cos\beta}{2\cos\alpha\sin\beta+\sin(\alpha-\beta)}\right)\cdot2\sqrt{3},$$

если
$$\alpha + \beta = 120^{\circ}$$
.

24 Упростите выражение $\cos(\pi+2\alpha)+\sin(\pi+2\alpha)\operatorname{tg}\left(\frac{\pi}{2}+\alpha\right)$.

25 Упростите выражение $\frac{\sin^4 \alpha - \cos^4 \alpha}{\cos^2 \alpha - \sin^2 \alpha} - tg^2 \alpha ctg^2 \alpha$.

26 Упростите выражение $\frac{\sin^3 \alpha - \cos^3 \alpha}{1 + \sin \alpha \cos \alpha} + \cos \alpha - \sin \alpha$.

27 Упростите выражение $19 + \sin^4 \alpha - \cos^4 \alpha + \cos^2 \alpha$.

28 Упростите выражение $4\sin^2 2\alpha + 16\sin^4 \alpha - 16\sin^2 \alpha$.

29 Упростите выражение $\frac{1-2\sin^2lpha}{2\lg(45^\circ-lpha)\cos^2(45^\circ-lpha)}.$

30 Вычислите: $\frac{\sin\beta + \cos\beta}{(\sin\beta - \cos\beta)^{-1}}$, если $\sin 2\beta = -0.6$; $\frac{\pi}{2} < \beta < \frac{3\pi}{4}$.

 $\boxed{31}$ Вычислите: $\frac{\cos \beta - \sin \beta}{(\sin \beta + \cos \beta)^{-1}}$, если $\sin 2\beta = -0.8$; $\frac{3\pi}{4} < \beta < \pi$.

32	Вычислите: 16ctg110°sin105°tg70°cos105°.
	Ответ:
33	Вычислите: 12ctg140°sin75°tg40°cos75°. Ответ:
34	Вычислите: $\frac{1-2\sin^2 43^\circ}{\sin 176^\circ + \sin 4^\circ}$.
	Ответ:
35	Вычислите: $\frac{2\cos^2 48^\circ - 1}{\sin 186^\circ - \sin 6^\circ}$.
	Ответ:
36	Вычислите: $\frac{\sqrt{3}}{2} (\cos^4 75^\circ - \cos^4 15^\circ).$
	Ответ:
37	Найдите значение выражения $8 cos 2 \beta$, если $2 cos 2 \beta + 9 sin \beta - 4 = 0$. Ответ:
38	Найдите значение выражения $\cos 2\beta$, если $3\cos 2\beta + 11\sin \beta - 7 = 0$.
	Ответ:
	Haari O
	Часть 2
Заг	ишите решение с полным его обоснованием.
39	Вычислите: $\cos 20^{\circ} + \cos 40^{\circ} + + \cos 160^{\circ} + \cos 180^{\circ}$.
	Ответ:
40	Вычислите: 16cos20°cos40°cos80°.
	Ответ:
41	Вычислите: $\sin 54^{\circ} \sin 18^{\circ}$.
	Ompan:

Найдите значение выражения $27\sin\alpha\cos\alpha$, если $\sin\alpha-\cos\alpha=\frac{1}{3}$.		
Ответ:		
43 Найдите значение выражения $81(\sin^3\alpha + \cos^3\alpha)$, если $\sin\alpha + \cos\alpha = \frac{1}{3}$.		
Ответ:		
Вычислите: $\frac{2\sin 2\alpha - 3\cos 2\alpha}{4\sin 2\alpha + 5\cos 2\alpha}$, если $tg\alpha = 3$.		
Ответ:		
Вычислите: $\frac{7\cos\alpha+4\sin\alpha}{4\sin\alpha+3\cos\alpha}$, если $4\sin2\alpha=15\sin^2\alpha+1$.		
Ответ:		
46 Упростите: $3(\sin^4 \alpha + \cos^4 \alpha) - 2(\sin^6 \alpha + \cos^6 \alpha)$.		
Ответ:		
1.2. Тригонометрические функции		
Содержание, проверяемое заданиями: значения функции, область определения функции, периодичность, множество значений функции, чётность, нечётность, возрастание и убывание, ограниченность, сохранение знака функции.		
Часть 1		
Базовый уровень		
Ответом к заданиям 1–42 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы. Единицы измерений писать не нужно.		
D		
Вычислите: tg 390° · √3.		
Вычислите: tg 390°·√3.Ответ:		

3	Вычислите: $\cos \frac{11\pi}{6} \cdot \sqrt{3}$.
	Ответ:
4	Вычислите: $ctg(-300^{\circ}) \cdot 2\sqrt{3}$.
	Ответ:
	Профильный уровень
5	Какое число из промежутка (2; 3) не входит в область определения функции $y = tg(\pi x)$?
	Ответ:
6	Какое число из промежутка (1,4; 2,7) не входит в область определения функции $y={ m ctg}(\pi x)$?
	Ответ:
7	Найдите наибольшее значение функции $y=\cos x$ на промежутке $\left[\frac{\pi}{3};\frac{\pi}{2}\right]$. Ответ:
8	Найдите наименьшее значение функции $y = \cos x$ на промежутке $\left[-\pi; \frac{\pi}{4}\right]$. Ответ:
9	Найдите наибольшее значение функции $y=\sin x$ на отрезке $\left[0;\frac{\pi}{6}\right]$. Ответ:
10	Найдите наименьшее значение функции $y=\sin x$ на отрезке $\left[\frac{\pi}{6};\pi\right]$. Ответ:
11	Найдите наибольшее значение функции $y=\sin x$ на отрезке $\left[\frac{\pi}{6};2\pi\right]$. Ответ:
12	Найдите наименьшее значение функции $y = \sin\left(\frac{\pi}{2} - x\right) - \cos(\pi + x)$. Ответ:

13	Найдите наибольшее значение функции $y = \sin\left(\frac{\pi}{2} - x\right) + \cos(\pi + x)$.
19	Ответ:
14	Сколько целых чисел входит в множество значений функции $y = \sin 15^{\circ} \cos x + \cos 15^{\circ} \sin x$
	$+\cos 15^{\circ}\sin x$?
	Ответ:
15	Сколько натуральных чисел входит в множество значений функции
	$y = \cos\frac{\pi}{8}\cos x - \sin\frac{\pi}{8}\sin x?$
	8 8
	Ответ:
10	Найдите наименьшее значение функции $y = 5 - \cos x$.
16	Ответ:
17	Найдите наибольшее значение функции $y = 7 - \sin(2x)$.
	Ответ:
18	Найдите наименьшее значение функции $y = 1 + 2\cos(3x)$.
	Ответ:
10	Найдите наибольшее значение функции $y = 3 - 4\sin(5x)$.
19	Ответ: .
20	Укажите наибольшее целое число, не превосходящее $\sin 11^\circ$.
	Ответ:
21	Укажите наибольшее целое число, не превосходящее сов97°.
	Ответ:
22	Укажите наибольшее целое число, не превосходящее $2\sin 31^\circ$.
	Ответ:
23	Укажите наибольшее целое число, не превосходящее $2 \mathrm{tg} 46^\circ$.
	Ответ: .

24	Найдите наибольшее значение функции $y = 3\sin(2x) + 4$.
	Ответ:
25	Найдите наибольшее целое значение функции $y = 6\cos x \operatorname{tg} x$.
	Ответ:
26	Найдите наименьшее значение функции $y = 5\sin(3x) - 12$.
	Ответ:
27	Найдите наименьшее целое значение функции $y=14\mathrm{sin}x\mathrm{ctg}x$.
	Ответ:
28	Найдите наибольшее значение функции $y = \sin x \cos x$.
	Ответ:
29	Найдите наименьшее значение функции $y = 2\left(\cos^2\frac{x}{2} - \sin^2\frac{x}{2}\right)$.
	Ответ:
30	Найдите наименьшее целое значение функции $y = \frac{\sin(2x)}{\sin x}$.
	Ответ:
01	Найдите наибольшее значение функции $y = \frac{9}{2\cos x + 5}$.
31	Other:
32	Найдите наименьшее значение функции $y = \frac{8}{3\sin x - 7}$. Ответ:
33	Сколько целых чисел содержится во множестве значений функции $y=\sin 2x^2$
	Ответ:
34	Сколько целых чисел содержится во множестве значений функции
	$y = 2\sin 2x + \sin x + 1?$

35	Сколько целых чисел содержится во множестве значении функции $y = \cos 2x + \cos x - 1$?
	Ответ:
36	Найдите множество значений функции $y = \text{tg}x\text{ctg}x$. Ответ:
37	В какой четверти находится число x , если $\sin x + \cos x = 1{,}01$? Ответ:
38	В какой четверти находится число x , если $\sin x + \cos x = -1,02$? Ответ:
39	Вычислите: $5\arcsin\left(\cos\frac{\pi}{2}\right)$.
	Ответ:
40	Вычислите: $\sqrt{3}\cos\left(\arcsin\frac{1}{2}\right)$.
	Ответ:
41	Вычислите: $\sqrt{2}\sin\left(\arccos\left(-\frac{\sqrt{2}}{2}\right)\right)$.
	Ответ:
42	Вычислите: $\frac{8}{\pi} \operatorname{arcctg}(\cos \pi)$.
	Ответ:
	Часть 2
Заг	пишите решение с полным его обоснованием.
43	При каких значениях a функция $y = a \cos x + \sin x - a \sin x$ будет чётной?
	Ответ:

44	При каких значениях a функция $y = a\cos x + \sin x - a\sin x$ будет нечётной?
	Ответ:
45	Пусть $f(x) = \cos x$, $g(x) = \sin x$. Сравните $f(f(0))$ и $g(g(0))$. Ответ:
46	Пусть $f(x) = \cos x$, $g(x) = 2x$. Найдите $f(g(0))$.
47	Пусть $f(x) = \sin x$. Найдите $f(f(f(0)))$. Ответ:
48	Пусть $f(x) = \cos x$. Найдите сумму корней уравнения $f(x) = 0$, если $x \in [-200;\ 200]$.
	Ответ:
49	Пусть $f(x) = 16\cos^4 x - 4\cos x + 1$. Найдите сумму наибольшего и наименьшего корней уравнения $f(x) = 0$, если $x \in [-200\pi; 200\pi]$.
50	Расположите в порядке возрастания: sin2000°, cos2000°, tg2000°, ctg2000°. Ответ:
51	Расположите в порядке убывания: sin1, cos2, ctg3, tg4. Ответ:
52	Найдите множество значений функции $y = \sqrt{2}(\cos 200x + \sin 200x)$. Ответ:
53	Найдите множество значений функции $y = \frac{\sqrt{2\sqrt{2}(\cos 200x - \sin 200x)}}{2}.$
	Ответ:

1.3. Тригонометрические уравнения

Codepжahue, проверяемое заданиями: общая формула решения уравнений $\sin x = a$, $\cos x = a$, tgx = a, ctgx = a; приёмы решения тригонометрических уравнений: разложение на множители, замена переменной, использование свойств функций, использование графиков, использование нескольких приёмов при решении тригонометрических уравнений; системы, содержащие одно или два тригонометрических уравнения; уравнения с параметром; уравнения, содержащие переменную под знаком модуля.

Часть 1

Базовый уровень

Ответом к заданиям 1–52 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы. Единицы измерений писать не нужно.

1	Укажите наибольший отрицательный корень уравнения $2\sin x + 1 = 0$. Ответ запишите в градусах.
	Ответ:
2	Укажите наименьший положительный корень уравнения $\sqrt{3} \operatorname{ctg} x + 3 = 0$. Ответ запишите в градусах.
	Ответ:
3	Найдите наибольший отрицательный корень уравнения $2\sqrt{3} \lg x - 6 = 0$. Ответ запишите в градусах.
	Ответ:
4	Найдите наименьший положительный корень уравнения $\cos(2x)=0.5$. Ответ запишите в градусах.
	Ответ:
5	Укажите наименьший положительный корень уравнения $\sin(4x) = \frac{\sqrt{3}}{2}$. Ответ запишите в градусах.
	Ответ:
	Профильный уровень
6	Найдите наибольший отрицательный корень уравнения $\cos(2x)\cos x - \sin(2x) \times \sin x = 1$. Ответ запишите в градусах.
	Ответ:

7	Укажите число корней уравнения $\sin 200x \cos 199x - \cos 200x \sin 199x = 0$, принадлежащих промежутку [0; 4π].
	Ответ:
8	Укажите число корней уравнения $tgx \cdot ctgx + cosx = 0$, принадлежащих промежутку [0; 2π].
	Ответ:
9	Укажите ближайший к 0 корень уравнения $2\sin x + 1 = 0$. Ответ запишите в градусах.
	Ответ:
10	Укажите ближайший к $\frac{\pi}{2}$ корень уравнения $2\cos x + \sqrt{3} = 0$. Ответ запишите в градусах.
	Ответ:
11	Укажите ближайший к π корень уравнения $\sin x = \frac{\sqrt{3}}{2}$. Ответ запишите в градусах.
	Ответ:
12	Укажите ближайший к π корень уравнения $\sin x = \frac{-3}{2\sqrt{3}}$. Ответ запишите в градусах.
	Ответ:
13	Укажите число корней уравнения $\cos x = -\frac{\sqrt{3}}{2}$, которые лежат в промежутке [0; 3π].
	Ответ:
14	Укажите количество корней уравнения $\lg x = -\sqrt{3}$, которые лежат в промежутке $[-\pi; \ 2\pi]$.
	Ответ:
15	Укажите число корней уравнения $\sin x = \frac{1}{3}$ на промежутке [0; π].
	Ответ:

16	Укажите число корней уравнения $\sin x = \frac{1}{3}$ на промежутке [π ; 2π].
	Ответ:
17	Укажите число корней уравнения $tgx=2$ на промежутке $\left[0;\frac{\pi}{2}\right]$. Ответ:
18	Укажите ближайший к $\frac{\pi}{6}$ корень уравнения $\cos(4x)=1$. Ответ запишите в градусах. Ответ:
19	Найдите сумму корней уравнения $\cos(x+2000\pi)=0$, принадлежащих промежутку [0; 2π]. Ответ запишите в градусах.
20	Укажите наименьший положительный корень уравнения $tg(2x-10^\circ)=\frac{1}{\sqrt{3}}$. Ответ запишите в градусах.
21	Решите уравнение $\cos(\pi x) = 1$. В ответе укажите произведение корней уравнения, принадлежащих промежутку (1; 6). Ответ:
22	Решите уравнение $\sin(\pi x) = 1$. В ответе укажите сумму корней уравнения, принадлежащих промежутку (1; 6). Ответ:
23	Укажите наименьший положительный корень уравнения $\sin(\pi-x)-\cos\left(\frac{\pi}{2}+x\right)=-1$. Ответ запишите в градусах.
24	Укажите наименьший положительный корень уравнения $\dfrac{\cos x - \frac{1}{2}}{\sin x - \dfrac{\sqrt{3}}{2}} = 0$. Ответ запишите в градусах.

25	Определите число корней уравнения	$\frac{\sin x - \frac{\sqrt{2}}{2}}{\cos x + \frac{\sqrt{2}}{2}} = 0$ из промежутка [0; 2π].
	Ответ:	2
26	Определите число корней уравнения $\frac{\sin x}{\log x}$	$\frac{x}{x} = 0$ из промежутка [0; 2π].
	Ответ:	
27	Сколько корней имеет уравнение $tgx = -\frac{1}{2}$	$\frac{1}{\sqrt{3}-2}$ +2 на промежутке $\left[-\pi; \frac{\pi}{2}\right]$?
	Ответ:	
28	Сколько корней имеет уравнение $\cos\left(\frac{\pi}{2}\right)$	$-x$) $-3\cos 2x = 2$ на отрезке $\left[-\pi; \frac{\pi}{2}\right]$?
	Ответ:	
29	Укажите наименьший положительный ко	орень уравнения $\sin(\pi x)(\cos x - 2) = 0$.
	Ответ:	
30	Укажите корень уравнения $\cos(\pi x)(\sin(\pi x))$ ($\sin(\pi x)$)	$(2x)+\sqrt{2}=0$, принадлежащий проме-
	Ответ:	
31	Укажите корень уравнения $\sin^2 \frac{x}{2} - \cos^2 \frac{x}{2}$	$\frac{1}{2} = \frac{\sqrt{2}}{2}$, принадлежащий промежутку
	(0; π). Ответ запишите в градусах.	
	Ответ:	
32	Найдите наибольший отрицательный ко Ответ запишите в градусах.	рень уравнения $\cos x + \cos(2x) = 2$.
	Ответ:	
33	Укажите наименьший положительный в $2\cos^2(\pi-x)+5\sin x-4=0$. Ответ запи	- v -

34	Найдите наибольший отрицательный корень уравнения
	$\cos(2x) + 5\cos(-x) + 3 = 0.$
	Ответ запишите в градусах.
	Ответ:
35	Найдите сумму корней уравнения $\sin x - \sqrt{3}\cos x = 0$, принадлежащих промежутку $[-\pi; \pi]$. Ответ запишите в градусах.
	Ответ:
36	Укажите число корней уравнения $\sin(\pi-x)-\cos\left(\frac{\pi}{2}+x\right)=\sqrt{3}$, принадлежащих промежутку $[-\pi;\ 2\pi]$.
	Ответ:
37	Укажите наименьший положительный корень уравнения $3\cos x + \sin(-2x) = 0$. Ответ запишите в градусах.
	Ответ:
38	С помощью графиков укажите число корней уравнения $\sin(2x) = x$. Ответ:
39	С помощью графиков укажите число корней уравнения $\cos x = 10x$. Ответ:
40	Укажите число корней уравнения $\frac{\sin x - \frac{1}{2}}{\cos x - \frac{\sqrt{3}}{2}} = 0$, принадлежащих промежутку [-2 π ; 0].
	Ответ:
41	Укажите число корней уравнения $6\sin^2 x + 5\sin x\cos x + 3\cos^2 x = 2$, принадлежащих промежутку [$-\pi$; 0].
42	Укажите число корней уравнения $\operatorname{tg}(3x)=\operatorname{tg} x$ из промежутка $\left[0; \frac{5\pi}{2}\right]$.
	Ответ:

43 Решите уравнение $4\cos x = x^2 + 4$.

Ответ: _____.

 $\boxed{44} \quad \text{Решите уравнение } \sin\left(\frac{37\pi}{2} + x\right) = 3x^2 + 1.$

Ответ: ______.

Найдите наибольший отрицательный корень уравнения: $(2\cos x - 1) \cdot \sqrt{\sin x} = 0$. Ответ запишите в градусах.

Ответ: ______.

Найдите сумму различных корней уравнения $\cos x \cos(5x) = \cos(6x)$, принадлежащих промежутку [0; π]. Ответ запишите в градусах.

Ответ: ______

Решите систему уравнений $\begin{cases} x-y=\frac{\pi}{2}, \\ \cos x-\cos y=-\sqrt{2}. \end{cases}$ В ответе запишите значение $y\in [0;\ 360^\circ] \text{ в градусах}.$

Ответ: ______ .

Решите систему уравнений $\begin{cases} x+y=\frac{\pi}{2}, \\ \sin x+\sin y=-\sqrt{2}. \end{cases}$ В ответе запишите значение $x\in[0;\ 360^\circ] \text{ в градусах}.$

Ответ: ______

Решите систему уравнений $\begin{cases} \sin x \cos y = -0.5, \\ \cos x \sin y = -0.5. \end{cases}$ В ответе запишите значение $x \in [-45^\circ; \ 0^\circ]$ в градусах.

Ответ: ______.

Решите систему уравнений $\begin{cases} \cos x \cos y = -\frac{\sqrt{3}}{4}, \\ \sin x \sin y = -\frac{\sqrt{3}}{4}. \end{cases}$ В ответе запишите значение

 $y \in [-60^\circ; 0^\circ]$ в градусах.

51	Укажите наименьшее целое значение a , при котором уравнение $\sin x = \frac{a^2}{2} - 4$ имеет хотя бы одно решение.
	Ответ:
52	Укажите наименьшее натуральное значение a , при котором уравнение $\cos x = \frac{a^2}{2}$ не имеет решений. Ответ:
	Часть 2
Заг	пишите решение с полным его обоснованием.
53	Укажите число корней уравнения $\left(\cos x + \frac{\sqrt{2}}{2}\right) \left(\operatorname{tg}\left(x - \frac{\pi}{4}\right) - 1\right) = 0$, принадлежащих промежутку $[0;\ 2\pi]$.
	Ответ:
54	Найдите сумму корней уравнения $\sin(2x)(\operatorname{tg} x - 1) = 0$, принадлежащих промежутку [0; 2π]. Ответ запишите в градусах.
55	Найдите сумму корней уравнения $\sin(2\pi x) + 6\cos(\pi x) = 3 + \sin(\pi x)$, принадлежащих промежутку [-20; 20].
56	Найдите сумму корней уравнения $\cos(2\pi x) - 3\sin(\pi x) + 1 = 0$, принадлежащих промежутку [0; 20].
57	Решите уравнение $\cos(2x) + 0.5 \cos x \cdot \sin x = 0.$ Ответ:
58	Решите уравнение $\cos(2x) - 0.5 \cos x \cdot \sin x = 0.$ Ответ:
59	Решите уравнение $\cos\left(x + \frac{41\pi}{4}\right) + \sin(2x) = -2$. Ответ:

60	Решите уравнение $2\cos^2(2x) - \sin(3x) = 3$.
	Ответ:
61	Решите уравнение $\sin^2 x + 0.25\sin^2(2x) - \sin x \cdot \sin^2(2x) = 0.$ Ответ:
62	Решите систему уравнений $\begin{cases} y-2\sin x=0,\\ \left(4\sqrt{\sin x-1}\right)(3y+7)=0. \end{cases}$
	Ответ:
63	Решите систему уравнений $\begin{cases} y + \cos x = 0, \\ \left(4\sqrt{\cos x} - 1\right)(2y - 1) = 0. \end{cases}$
	Ответ:
64	Решите систему уравнений $\begin{cases} y+\operatorname{tg} x=0,\\ (3\operatorname{tg} x-1)\big(2\sqrt{y}-1\big)=0. \end{cases}$
	Ответ:
65	Укажите наименьшее значение b , при котором уравнение $\cos 2x - (3 + 2b)\cos x + 6b = 0$ имеет хотя бы один корень.
	Ответ:
66	Укажите наименьшее значение b , при котором уравнение $\cos 4x - (3 + 2b)\cos 2x + 6b = 0$ имеет хотя бы один корень.
	Ответ:
67	При каких значениях параметра уравнение $\cos 2x - \cos x + a = 0$ имеет хотя бы одно решение?
	Ответ:
68	Найдите наименьшее натуральное значение a , при котором уравнение $\sin^4 x - 6\sin^2 x + a = 0$ не имеет решений.
	Ответ:

69 Решите уравнение $x^2 + y^2 + \cos 2x = 2xy$.

Ответ: _____

70 Решите уравнение $\frac{42x^2 + \pi x - \pi^2}{\sqrt{\sin x + 1}} = 0$.

Ответ: ______.

71 Решите уравнение $\frac{\sqrt{\sin x - 1}}{2\pi x - \pi^2} = 0$.

Ответ: ______.

72 Решите уравнение $\frac{\cos x - \sin x}{4x - \pi} = 0.$

Ответ: ______.

73 Решите уравнение $\frac{3\cos x + \cos 2x - 1}{\tan x - \sqrt{3}} = 0.$

Ответ: ______.

74 Решите уравнение $\frac{\operatorname{tg} x - \sqrt{3}}{3\cos x + \cos 2x - 1} = 0$.

Ответ: ______.

75 Решите уравнение $\frac{12\text{ctg}x-5}{13\sin x-12}=0$.

Ответ: ______.

76 Решите уравнение $\frac{13\sin x - 12}{12\cot x - 5} = 0$.

КОНТРОЛЬНАЯ РАБОТА № 1

Вариант 1

Часть 1

Ответом к заданиям 1–9 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы. Единицы измерений писать не нужно.

1	Дано:	$\cos\alpha = -0.8$	Ви	$\frac{\pi}{2} < \alpha < \pi$.	Найдите	$\sin \alpha$

Ответ: .

Какое число из промежутка (0; 1,4) не входит в область определения функции
$$y = tg(\pi x)$$
?

Ответ: ______.

$$3$$
 Найдите наименьшее значение функции $y=\sin x$ на промежутке $\left[\frac{\pi}{2};\frac{5\pi}{6}\right]$.

Ответ: _____

$$4$$
 Укажите наибольшее целое число, не превосходящее $\cos 61^{\circ}.$

Ответ: ______.

Укажите наибольший отрицательный корень уравнения
$$2\cos(\pi - x) - \sqrt{3} = 0$$
. Ответ запишите в градусах.

Ответ: _____

6 Найдите значение выражения
$$\frac{\sin(x+y)}{\sin x \sin y}$$
, если $\operatorname{ctg} x = 15$, $\operatorname{ctg} y = -13$.

Ответ: ______.

7 Найдите наименьшее значение функции
$$y = \frac{15}{\sin x - 4}$$
.

Ответ: ______.

8 Укажите число корней уравнения
$$\frac{\sin x}{\sqrt{4\pi^2 - x^2}} = 0$$
.

$(a-2)\sin x = a^2 - 4$ имеет хотя бы одно решение.
Ответ:
Часть 2
Запишите решение с полным его обоснованием.
10 Укажите корни уравнения $0.5\sin(2x)\cot gx - \cos x = \sin^2 x$, принадлежащие промежутку $[0; \pi]$.
Ответ:
Вариант 2
Часть 1
Ответом к заданиям 1–9 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы. Единицы измерений писать не нужно.
Какое число из промежутка (0,4; 1,8) не входит в область определения функции $y = \text{ctg}(\pi x)$?
Ответ:
3 Найдите наименьшее значение функции $y = \cos x$ на промежутке $\left[0; \frac{\pi}{3}\right]$. Ответ:
$oldsymbol{4}$ Укажите наибольшее целое число, не превосходящее $\sin(-4^\circ)$. Ответ:
5 Укажите наименьший положительный корень уравнения $2\sin(\pi+x)-1=0$. Ответ запишите в градусах.
Ответ:

6	Найдите значение выражения $\frac{\sin(x-y)}{\cos x \cos y}$, если $tgx=19$, $tgy=-17$.
	Ответ:
7	Найдите наибольшее значение функции $y = \frac{15}{\sin x + 4}$.
	Ответ:
8	Сколько корней имеет уравнение $\frac{\sin x}{\sqrt{\pi^2 - x^2}} = 0$?
	Ответ:
9	Укажите наименьшее целое значение a , при котором уравнение $(a+4)\cos x = a^2 - 16$ имеет хотя бы одно решение.
	Ответ:
	Часть 2
Зап	ишите решение с полным его обоснованием.
10	Укажите число корней уравнения $0.5\sin(2x)$ tg $x-\sin x=\cos^2 x$, принадлежащих промежутку $[-\pi;\ \pi]$.
	Ответ:

2. АЛГЕБРА

2.1. Преобразования иррациональных и степенных выражений

Codeржание, проверяемое заданиями: понятие корня степени n, свойства корня степени n, понятие степени с рациональным показателем, свойства степени с рациональным показателем.

Часть 1 Базовый уровень

Ответом к заданиям 1-60 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы. Единицы измерений писать не нужно.

1	Вычислите: $\sqrt[4]{81 \cdot 0,0001}$.	
	Ответ:	
2	Вычислите: $\sqrt[3]{0,9} \cdot \sqrt[3]{-0,03}$.	
	Ответ:	
3	Вычислите: $\sqrt[4]{54} \cdot \sqrt[4]{24}$.	
	Ответ:	
4	Вычислите: $3 \cdot \sqrt[3]{-4\frac{17}{27}}$.	
	Ответ:	
5	Вычислите: $\left(-\sqrt[6]{17}\right)^6$.	
	Ответ:	
6	Вычислите: $\left(-3\cdot\sqrt[5]{\frac{1}{9}}\right)^5$.	
	Ответ:	
7	Вычислите: ⁵ √81·96.	
	Ответ:	
8	Найдите значение выражения: $5^{2x-1} \cdot 5^{-4}$	x^{x} при $x = -0.5$.
	Ответ: .	

9	Найдите	значение	выражения:	$\sqrt[3]{-20\cdot 25\cdot 128}$.
	Ответ:			_

$$10$$
 Вычислите: $\frac{\sqrt[3]{128}}{\sqrt[3]{2}}$. Ответ: ______

11
 Найдите значение выражения:
$$\sqrt[3]{121} \cdot \sqrt[3]{-11}$$
.

 Ответ: _______.

$$12$$
 Найдите значение выражения: $\sqrt[3]{16} \cdot \sqrt[6]{16}$. Ответ: ______.

15 Вычислите:
$$\left(\frac{1}{4}\right)^{-2} - 4^{-3} : 4^{-5}$$
.

19	Представьте выражение $x \cdot \sqrt[4]{x}$ в виде степени с рациональным показателем. В ответе укажите показатель степени.
	Ответ:

20	Представьте выражение $\frac{x^2}{\sqrt[5]{x}}$ в виде степени с рациональным показателем.
	В ответе укажите показатель степени.
	Ответ:
	Профильный уровень
21	Представьте в виде степени с рациональным показателем $\frac{x \cdot \sqrt[5]{x^2}}{\left(\sqrt[10]{x}\right)^2}$. В ответе укажите показатель степени.
	Ответ:
22	Вычислите: $\left(7\sqrt{6\sqrt{6}} + \sqrt[4]{216}\right)^{\frac{4}{3}}$.
	Ответ:
23	Вычислите: $\left(127\sqrt{2\sqrt[4]{8}} + \sqrt[4]{2\sqrt{32}}\right)^{-\frac{8}{7}} \cdot 1024$.
	Ответ:
24	Упростите выражение $\frac{6-4\sqrt{3}}{\left(\sqrt[4]{3}-\sqrt[4]{27}\right)^2}.$
	Ответ:
25	Упростите выражение $\left(\left(\sqrt[4]{8}-\sqrt[4]{2}\right)^2+3\right)\cdot\left(\left(\sqrt[4]{8}+\sqrt[4]{2}\right)^2-3\right)$.
	Ответ:
26	Вычислите: $\frac{7\sqrt{30}}{3\sqrt{10}-10\sqrt{3}}+\sqrt{3}+\sqrt{10}.$
	Ответ:

 $oxed{27}$ Вычислите: $64^{-rac{1}{2}} \cdot \left(3rac{3}{8}
ight)^{-rac{2}{3}} \cdot \sqrt{324}$.

28 Найдите значение выражения $27 \cdot 36^{-\frac{1}{2}} \cdot \left(3\frac{3}{8}\right)^{-\frac{2}{3}}$.

Ответ: ______.

Ответ: .

30 Вычислите: $\frac{\sqrt[3]{(8-\sqrt{63})^2}}{\sqrt[3]{8+\sqrt{63}}} + \sqrt{63}$.

Ответ: ______.

31 Вычислите: $\frac{\sqrt[3]{(6-\sqrt{35})^2}}{\sqrt[3]{6+\sqrt{35}}} + \sqrt{35}$.

Ответ: ______.

32 Вычислите: $\sqrt{4+2\sqrt{3}} - \sqrt{4-2\sqrt{3}}$.

Ответ: ______.

33 Упростите до целого числа выражение $\sqrt{10-\sqrt{96}}-\sqrt{10+\sqrt{96}}$.

Ответ: .

34 Выражение $\sqrt{7-\sqrt{24}} - \sqrt{7+\sqrt{24}}$ является целым числом. Найдите его.

Ответ: ______

35 Выражение $\sqrt{3-\sqrt{8}}-\sqrt{2}$ является целым числом. Найдите его.

Ответ: ______.

 $\boxed{\mathbf{36}}$ Упростите выражение $54^{\frac{1}{3}} + 48^{\frac{1}{4}} - \sqrt[4]{243} - 3 \cdot \sqrt[3]{2} + \sqrt[4]{3}$.

 $\boxed{ 37 }$ Упростите выражение $40^{\frac{1}{3}} + 162^{\frac{1}{4}} - 3 \cdot \sqrt[4]{2} - 2 \cdot \sqrt[3]{5}$.

Ответ:

38 Вычислите значение выражения: $\frac{\sqrt[3]{243} \cdot \sqrt[5]{16}}{3^{\frac{2}{3}} \cdot 4^{-0.6}}$.

Ответ: _____

39 Упростите выражение $\frac{8-27^n}{4+2\cdot 3^n+9^n}+3^n$.

Ответ: ______.

40 Упростите выражение $\frac{8^m + 27}{4^m - 3 \cdot 2^m + 9} - 2^m$.

Ответ: ______.

41 Найдите значение выражения $\left(\frac{x^{\frac{1}{3}}-x^{-\frac{1}{3}}}{\frac{1}{x^{\frac{1}{3}}+1}}\right)^2-1+2x^{-\frac{1}{3}}$ при x=0,008.

Ответ: ______

42 Упростите выражение $\frac{\sqrt{a}-16\sqrt{b}}{\left(a^{\frac{1}{8}}+2b^{\frac{1}{8}}\right)^2+\left(a^{\frac{1}{8}}-2b^{\frac{1}{8}}\right)^2}$ и найдите его значение

при $a = \frac{1}{16}$ b = 81.

Ответ: ______.

 $\boxed{f 43}$ Найдите значение выражения $\left(a^{-rac{1}{5}}-a^{rac{4}{5}}
ight)\!\left(a^{rac{1}{5}}-a^{-rac{4}{5}}
ight)$ при a=10.

Ответ: _____

Упростите выражение $\frac{9x-y}{3x+x^{0.5}y^{0.5}}$ и найдите его значение при x=100 и y=576.