

Содержание

От издательства..11

Вступление...12

Пролог: как писать программы...29

I	 ДАННЫЕ ФИКСИРОВАННОГО РАЗМЕРА.............................55

1	 Арифметика..56
1.1. Арифметика чисел...57
1.2. Арифметика строк...59
1.3. А теперь все смешаем..61
1.4. Арифметика изображений..63
1.5. Арифметика логических значений...66
1.6. Смешанные операции с логическими значениями..............................67
1.7. Предикаты: знай свои данные..69

2	 Функции и программы..72
2.1. Функции...72
2.2. Вычисления..76
2.3. Композиция функций..80
2.4. Глобальные константы..83
2.5. Программы...85

3	 Как проектировать программы...98
3.1. Проектирование функций...99
3.2. Практические упражнения: функции..106
3.3. Знание предметной области...106
3.4. От функций к программам..107
3.5. О тестировании..108
3.6. Проектирование интерактивных программ..110
3.7. Миры виртуальных питомцев...120

4	 Интервалы, перечисления и детализация..122
4.1. Программирование с условиями..122
4.2. Условные вычисления..124
4.3. Перечисления...127
4.4. Интервалы..131
4.5. Детализация...135
4.6. Проектирование с использованием детализации...............................143
4.7. Миры с конечными состояниями...146

5	 Добавляем структуру..154
5.1. От позиций к структурам posn..154
5.2. Вычисления со структурами posn...155

6 Содержание

5.3. Программирование с posn..156
5.4. Определение структурных типов...158
5.5. Вычисления со структурами...163
5.6. Программирование со структурами...167
5.7. Вселенная данных..174
5.8. Проектирование с использованием структур......................................178
5.9. Структура в мире...181
5.10. Графический редактор...182
5.11. Больше виртуальных питомцев..184

6	 Структуры и детализация...187
6.1. Проектирование с использованием детализации, снова....................187
6.2. Смешивание миров...200
6.3. Ошибки ввода...203
6.4. Проверка состояния мира...207
6.5. Предикаты равенства..209

7	 Итоги...211

Интермеццо 1. Язык для начинающих студентов..212
Словарь BSL...212
Грамматика BSL..213
Значение в языке BSL...217
Значения и вычисления...220
Ошибки в BSL..220
Логические выражения..223
Определения констант...224
Определения структур...226
Тесты в BSL..228
Сообщения об ошибках в BSL..229

II	 ДАННЫЕ ПРОИЗВОЛЬНОГО РАЗМЕРА................................237

8	 Списки...238
8.1. Создание списков...238
8.2. Что такое '(), что такое cons...243
8.3. Программирование со списками..245
8.4. Вычисления со списками...249

9	 Проектирование с определениями данных, ссылающимися
на самих себя...251
9.1. Практические упражнения: списки..258
9.2. Непустые списки..260
9.3. Натуральные числа..266
9.4. Русская матрешка..270
9.5. Списки в интерактивных программах...274
9.6. Замечания о списках и множествах..279

7Содержание

10	 Еще о списках...284
10.1. Функции, создающие списки..284
10.2. Структуры в списках..287
10.3. Списки в списках, файлы...291
10.4. И снова о графическом редакторе..300

11	 Проектирование методом композиции..312
11.1. Функция list..312
11.2. Композиция функций..314
11.3. Повторяющиеся вспомогательные функции.....................................316
11.4. Обобщающие вспомогательные функции...323

12	 Проекты: списки..333
12.1. Реальные данные: словари..333
12.2. Реальные данные: iTunes...335
12.3. Игры со словами, иллюстрация приема композиции.......................340
12.4. Игры со словами, суть проблемы..345
12.5. «Питон»...347
12.6. Простой «Тетрис»...350
12.7. Полная игра «Космические захватчики»..353
12.8. Конечные автоматы...354

13	 Итоги...362

Интермеццо 2. Quote, unquote...364
Цитирование...364
Квазицитирование и антицитирование...365
Объединение с антицитированием..370

III	 АБСТРАКЦИИ... 375

14	 Сходства повсюду..376
14.1. Сходства в функциях..376
14.2. Отличающиеся сходства..378
14.3. Сходства в определениях данных...381
14.4. Функции – это значения..384
14.5. Вычисления с функциями...385

15	 Проектирование абстракций..389
15.1. Абстрагирование примеров..389
15.2. Сходства в сигнатурах..394
15.3. Единая точка управления ...399
15.4. Абстрагирование макетов...400

16	 Использование абстракций..402
16.1. Имеющиеся абстракции..403
16.2. Локальные определения..405

8 Содержание

16.3. Локальные определения добавляют выразительности.....................409
16.4. Вычисления с локальными определениями......................................411
16.5. Использование абстракций на примерах...415
16.6. Проектирование с использованием абстракций...............................420
16.7. Практические упражнения: абстракция...422
16.8. Проекты: абстракция...423

17	 Безымянные функции...426
17.1. Определение функций с помощью лямбда-выражений...................427
17.2. Вычисления с лямбда-выражениями..429
17.3. Абстрагирование с помощью лямбда-выражений............................432
17.4. Определение спецификаций с помощью лямбда-выражений.........435
17.5. Представление с помощью лямбда-выражений................................442

18	 Итоги...447

Интермеццо 3. Область видимости и абстракции..448
Область видимости...448
Циклы в языке ISL..453
Сопоставление с образцом..461

IV	 ПЕРЕПЛЕТАЮЩИЕСЯ ДАННЫЕ..468

19	 Поэзия S-выражений...469
19.1. Деревья...469
19.2. Леса...477
19.3. S-выражения..479
19.4. Проектирование с использованием взаимосвязанных данных.......485
19.5. Проект: BST..487
19.6. Упрощение функций..491

20	 Итеративное уточнение..494
20.1. Анализ данных...494
20.2. Уточнение определений данных..496
20.3. Уточнение функций...498

21	 Уточнение интерпретатора..501
21.1. Интерпретация выражений..501
21.2. Интерпретация переменных...504
21.3. Интерпретация функций...507
21.4. Интерпретация всего и вся...509

22	 Проект: обработка XML..512
22.1. XML как S-выражения..512
22.2. Отображение XML-перечислений...518
22.3. Предметно-ориентированные языки...523
22.4. Чтение XML...528

9Содержание

23	 Одновременная обработка..533
23.1. Одновременная обработка двух списков: случай 1...........................533
23.2. Одновременная обработка двух списков: случай 2...........................534
23.3. Одновременная обработка двух списков: случай 3...........................537
23.4. Упрощение функций..541
23.5. Проектирование функций с двумя сложными аргументами...........542
23.6. Практические упражнения: два аргумента..544
23.7. Проект: база данных..548

24	 Итоги...560

Интермеццо 4. Природа чисел..561
Арифметика с числами фиксированного размера.....................................561
Переполнение...567
Потеря значимости..567
Числа в *SL...568

V	 ГЕНЕРАТИВНАЯ РЕКУРСИЯ.. 574

25	 Нестандартная рекурсия...575
25.1. Рекурсия без структуры...575
25.2. Рекурсия, игнорирующая структуру...579

26	 Проектирование алгоритмов...585
26.1. Адаптация рецепта проектирования...585
26.2. Завершимость рекурсии..587
26.3. Структурная и генеративная рекурсии..590
26.4. Выбор..591

27	 Вариации на тему..597
27.1. Фракталы, первое знакомство...597
27.2. Бинарный поиск...600
27.3. Синтаксический анализ...606

28	 Математические примеры..610
28.1. Метод Ньютона..610
28.2. Интегрирование...614
28.3. Проект: гауссово исключение...621

29	 Алгоритмы с возвратами..627
29.1. Обход графов..627
29.2. Проект: возврат..636

30	 Итоги...643

Интермеццо 5. Стоимость вычислений..644
Конкретное время, абстрактное время...645
Определение термина «порядка»..651

10 Содержание

Почему программы используют предикаты и селекторы?.......................654

VI	 АККУМУЛЯТОРЫ..658

31	 Потеря знаний..659
31.1. Проблема структурной обработки..659
31.2. Проблема генеративной рекурсии...663

32	 Проектирование функций с аккумулятором..668
32.1. Условия применения аккумулятора...668
32.2. Добавление аккумуляторов...670
32.3. Преобразование простых функций в функции с аккумуляторами..672
32.4. Графический редактор с поддержкой мыши.....................................684

33	 Дополнительные примеры использования аккумуляторов...................687
33.1. Аккумуляторы и деревья...687
33.2. Представления данных с аккумуляторами..693
33.3. Аккумуляторы как результаты..699

34	 Итоги...706

Эпилог: что дальше...708

Предметный указатель..714

Вступление

Многие современные профессии требуют умения программировать
в той или иной форме. Бухгалтеры программируют электронные таб
лицы; музыканты программируют синтезаторы; писатели програм-
мируют текстовые процессоры; а веб-дизайнеры программируют
таблицы стилей. Когда мы писали эти слова для первого издания кни-
ги (1995–2000), читатели могли счесть их футуристическими, однако
к настоящему времени умение программировать стало обязатель-
ным, и появились многочисленные книги, онлайн-курсы и предметы
в общеобразовательной школе, которые удовлетворяют эту потреб-
ность и улучшают шансы людей на трудоустройство.

Типичный курс программирования учит подходу «Пробуй, пока не
заработает». Добившись нужного результата, учащийся восклицает:
«Работает!» – и идет дальше. К сожалению, эта фраза также является
самой короткой небылицей в информатике и многим людям стоила
многих часов их жизни. Эта книга, напротив, фокусируется на навы-
ках хорошего программирования и адресована всем – и профессио-
нальным программистам, и любителям.

Под «хорошим программированием» мы подразумеваем подход
к созданию программного обеспечения, который изначально опира-
ется на системное мышление, планирование и понимание на каждом
этапе и на каждом шаге. Чтобы подчеркнуть это, мы говорим о си-
стемном проектировании программ и системно спроектированных
программах. Что особенно важно, последнее словосочетание ясно
выражает требование к желаемой функциональности. Хорошее про-
граммирование также удовлетворяет эстетическое чувство выпол-
ненного долга; хорошая программа по своей элегантности сравнима
с хорошими стихами или черно-белыми фотографиями ушедшей
эпохи. Проще говоря, программирование отличается от хорошего
программирования как наброски карандашом на салфетке, сделан-
ные в закусочной, от картин маслом в музее.

Нет, эта книга не превратит вас в мастера живописи. Но мы не ста-
ли бы тратить пятнадцать лет на подготовку данного издания, если
бы не верили, что

каждый может разрабатывать программы
и
каждый может испытывать удовлетворение от творческого процесса.

Более того, мы утверждаем, что

проектирование программ – но не программирование –
в традиционном для Запада высшем образовании должно стоять

рядом с математикой и лингвистикой.

Студент, изучающий проектирование, который никогда больше не
коснется программ, все равно приобретет универсально полезные

13Вступление

навыки решения задач, приобретет опыт творческой деятельности
и научится ценить новую форму эстетики. Остальная часть этого
вступления подробно объясняет, что мы имеем в виду под «систем-
ным проектированием», кому и чем это выгодно и как мы обучаем
всему этому.

Системное проектирование программ
Программа взаимодействует с людьми, которых называют пользо-
вателями, и другими программами, которые могут быть серверами
или клиентами. Соответственно, любая более или менее полная про-
грамма состоит из множества строительных блоков, одни из которых
обрабатывают ввод, другие производят вывод, а третьи соединяют
первые со вторыми. В качестве фундаментальных строительных бло-
ков мы предпочитаем использовать функции, потому что все мы хо-
рошо знакомы с функциями по курсу школьной математики и пото-
му что простейшие программы являются именно такими
функциями. Главное – выяснить, какие функции необходи-
мы, как их соединить между собой и как их сконструиро-
вать из основных ингредиентов.

В этом контексте «системное проектирование программ»
означает сочетание двух составляющих: рецептов проекти-
рования и итеративного уточнения. Рецепты проектирова-
ния – это изобретение авторов, обеспечивающее возмож-
ность итеративного уточнения.

Рецепты проектирования применимы как к целым
программам, так и к отдельным функциям. В этой кни-
ге есть всего два рецепта для целых программ: один для
программ с графическим пользовательским интерфейсом
(Graphical User Interface, GUI) и другой для неинтерактив-
ных программ. Рецепты проектирования функций, напротив, намно-
го разнообразнее: для данных атомарных типов, таких как числа; для
перечислений разных видов данных; для данных, которые фиксиро-
ванным образом объединяют другие данные; для конечных, но про-
извольно больших данных; и так далее.

Рецепты проектирования для функций объединяются
общим процессом проектирования. В списке в рецепте 1
перечислены шесть основных шагов этого процесса. На-
звание каждого шага сообщает ожидаемый результат(ы),
а «команды» определяют ключевые действия. Центральную
роль в этом процессе играют примеры. Для представления
данных, выбранного на шаге 1, примеры иллюстрируют,
как фактическая информация кодируется в данные и как
данные интерпретируются в информацию. В шаге 3 гово-
рится, что человек, решающий задачу, должен проработать конкрет-

Мы черпали вдохновение
в методе, предложенном
Майклом Джексоном
(Michael Jackson) для
создания программ на
языке COBOL, а также
в беседах с Дэниелом
Фридманом (Daniel
Friedman) о рекурсии,
Робертом Харпером
(Robert Harper) о теории
типов и Дэниелом Джек-
соном (Daniel Jackson)
о проектировании про-
граммного обеспечения.

Преподавателям.
Попросите учащихся
скопировать рецепт 1
на картонную карточку.
Когда у кого-то из них
возникнет проблема,
попросите их предъ
явить карточку и указать
шаг, на котором они
застряли.

14 Вступление

ные сценарии, чтобы понять, что должна вычислить функция в каж
дом конкретном примере. Это понимание используется на шаге 5,
когда наступает время определения функции. Наконец, шаг 6 требует,
чтобы примеры были преобразованы в автоматизированные тесты,
проверяющие правильность работы функции в некоторых случаях.
Запуск функции на реальных данных может выявить другие расхож-
дения между ожиданиями и результатами.

Рецепт 1. Базовый рецепт проектирования функций
1.	 �Анализ задачи и определение данных. Определите, какая

информация и как должна быть представлена в выбранном
языке программирования. Сформулируйте определения дан-
ных и проиллюстрируйте их примерами.

2.	 �Сигнатура, описание назначения, заголовок. Укажите, ка-
кие данные функция принимает и выдает. Сформулируйте ко-
роткий ответ на вопрос: «что вычисляет функция?» Определите
заглушку с соответствующей сигнатурой.

3.	 �Примеры использования функции. Представьте примеры,
иллюстрирующие назначение функции.

4.	 �Создание макета функции. Используя определения данных,
напишите набросок функции.

5.	 �Определение функции. Заполните недостающие части в маке-
те функции. Используйте определение назначения и примеры.

6.	 �Тестирование. Переформулируйте примеры в тесты и убеди-
тесь, что функция успешно выполняет их все. Это поможет об-
наружить вкравшиеся ошибки. Кроме того, тесты дополнят
примеры и помогут другим понять определение функции, если
в этом возникнет необходимость, а она всегда возникает в лю-
бой серьезной программе.

На каждом шаге процесса проектирования возникают
вопросы. На некоторых из них, например на шаге создания
примеров использования функции или на шаге создания
макета, вопросы могут затрагивать определение данных.
Ответы на них почти автоматически создают промежуточ-
ный продукт. Затраты на эти подготовительные шаги оку-
паются, когда приходит время сделать творческий шаг – за-

вершить определение функции, потому что оказывают необходимую
помощь почти во всех случаях.

Необычность этого подхода заключается в создании новичками
промежуточного продукта. Когда новичок застрянет на каком-то
шаге, эксперт или преподаватель сможет проверить созданные про-
межуточные продукты, задать наводящие вопросы, характерные для
процесса проектирования, и тем самым помочь новичку преодолеть
затруднение. Этот аспект самообразования является коренным отли-
чием проектирования программ от программирования.

Преподавателям.
Наиболее важные

вопросы возникают на
шагах 4 и 5. Попросите
учащихся записать эти

вопросы своими словами
на обратной стороне
картонных карточек.

15Вступление

Итеративное уточнение решает проблему сложности и много-
гранности задач. Сделать все и сразу практически невозможно. Для
решения этой проблемы специалисты по информатике заимствовали
метод итеративного уточнения из естественных наук. Согласно мето-
ду итеративного уточнения рекомендуется сначала отбросить все не-
существенные детали и найти решение основной задачи. Затем шаг
уточнения добавляет одну из отброшенных деталей, и расширенная
задача решается повторно с максимальным использованием сущест
вующего решения. Повторение этих шагов уточнения и поиска реше-
ния в конечном итоге приводит к полному решению.

В этом смысле программист является своего рода ученым. Ученые
создают приблизительные модели идеализированной версии мира,
чтобы получить возможность делать прогнозы. Пока прогнозы сбыва-
ются, модель используется как есть; когда прогнозы начинают отли-
чаться от реальности, ученые пересматривают свои модели, стремясь
уменьшить расхождения. Точно так же, когда программист получает за-
дание, он создает первую модель, превращает ее в код, оценивает с по
мощью пользователей и итеративно уточняет модель, пока поведение
программы не будет достаточно точно соответствовать желаемому.

В этой книге мы раскрываем итеративное уточнение с двух сто-
рон. Поскольку проектирование методом итеративного уточнения
становится особенно полезным при проектировании сложных про-
грамм, книга подробно знакомит с этой техникой в четвертой части,
когда рассматриваемые задачи достигают определенной степени
сложности. Кроме того, в первых трех частях итеративное уточнение
используется для формулирования все более сложных вариантов од-
ной и той же задачи. То есть в одной главе мы берем базовую задачу,
решаем еще в одной главе, а в следующей главе ставим аналогичную
задачу, но с дополнительными деталями, отражающими новые, све-
жие, только что введенные понятия.

DrRacket и учебные языки
Чтобы научиться проектировать программы, нужно постоянно прак-
тиковаться. Как нельзя стать пианистом, не играя на пианино, так же
нельзя стать разработчиком программ, не создавая программ и не
доводя их до корректного поведения. По этой причине наша книга
сопровождается некоторой программной поддержкой: языком, на
котором можно писать программы, и средой разработки программ,
в которой программы редактируются как текстовые документы
и с помощью которой можно запускать программы.

Многие, встречавшиеся нам и говорившие, что хотели
бы научиться программированию, спрашивали, какой язык
программирования им следует выучить. Учитывая реклам-
ную шумиху, развернутую вокруг некоторых языков про-
граммирования, такой вопрос не вызывает удивления. Но

Преподавателям.
На курсах, предназна-
ченных для опытных
разработчиков, можно
использовать другой
подходящий язык.

16 Вступление

проблема в том, что он совершенно неуместен. Обучение программи-
рованию на языке, модном в настоящее время, часто приводит обуча-
ющихся к неудачам. Мода в этом мире очень недолговечна. Типичная
книга «Короткий курс программирования на X» не может научить
принципам, которые будут перенесены на следующий модный язык.
Хуже того, сам язык часто отвлекает от приобретения передаваемых
навыков на уровне формулирования решений и на уровне исправле-
ния ошибок.

Обучение проектированию программ, напротив, заключается преж
де всего в изучении принципов и приобретении передаваемых навы-
ков. Идеальный язык программирования должен поддерживать обе
эти цели, чего нельзя сказать ни об одном стандартном промышлен-
ном языке. Ключевая проблема в том, что новички совершают ошиб-
ки еще до того, как более или менее существенно овладевают языком,
однако языки программирования диагностируют эти ошибки, как
если бы программист уже знал все его тонкости. В результате сообще-
ния об ошибках часто ставят новичков в тупик.

Наше решение: начать со знакомства с нашим собствен-
ным специализированным языком обучения, который мы
назвали «язык для начинающих» (Beginning Student Lan-
guage, BSL). По сути, это почти тот же «иностранный» язык,
который изучается в школьном курсе математики. Он вклю-
чает обозначения для определений функций, применения
функций и условных выражений. Кроме того, он допускает
вложенность выражений. То есть этот язык настолько мал,

что диагностика ошибок в терминах всего языка доступна читателям,
у которых нет никаких знаний, кроме начального курса математики.

Учащийся, овладевший принципами структурного проектирова-
ния, может затем перейти к «языку для учащихся промежуточной
сложности» (Intermediate Student Language, ISL) и другим продви-
нутым диалектам с групповым названием *SL. В книге эти диалекты
используются для обучения принципам абстракции и рекурсии. Мы
твердо уверены, что использование такой последовательности обу-
чающих языков позволяет читателям подготовить себя к созданию
программ на широком спектре профессиональных языков програм-
мирования (JavaScript, Python, Ruby, Java и др.).

ПРИМЕЧАНИЕ. Обучающие языки реализованы на Racket, языке
программирования для создания языков программирования. Racket
ускользнул из лаборатории в реальный мир и постепенно стал приме-
няться для решения самых разных задач, от создания игр до реализа-
ции управления массивами телескопов. Обучающие языки заимству-
ют некоторые элементы из языка Racket, но эта книга не учит про-
граммированию на Racket. Однако учащийся, прочитавший эту книгу,
с легкостью сможет начать программировать на Racket. КОНЕЦ.

Выбирая среду программирования, мы оказываемся в такой же
плохой ситуации, как при выборе языка программирования. Среда

Преподавателям.
Вы можете объяснить,

что BSL – это школьная
алгебра с дополнитель-

ными формами данных
и множеством предопре-

деленных функций для
работы с ними.

17Вступление

программирования для профессионалов подобна кабине современ-
ного реактивного самолета. Она имеет множество элементов управ-
ления и дисплеев, непостижимых для любого, кто впервые запускает
такое программное приложение. Начинающим программистам ну-
жен эквивалент двухместного одномоторного поршневого самолета,
на котором они могут практиковать базовые навыки. Поэтому мы со-
здали среду программирования DrRacket для новичков.

DrRacket поддерживает очень увлекательное обучение с обратной
связью с использованием всего двух простых интерактивных пане-
лей: области определений, содержащей определения функций, и об-
ласти взаимодействия, которая позволяет программисту запросить
вычисление выражений, связанных с определениями. В этом кон-
тексте исследовать сценарии «что, если» так же легко, как в приложе-
нии для работы с электронными таблицами. Экспериментирование
можно начать при первом же контакте, используя обычные примеры
в стиле калькулятора и быстро переходя к вычислениям с изображе-
ниями, словами и другими формами данных.

Интерактивная среда разработки программ, такая как DrRacket,
упрощает процесс обучения. Во-первых, она позволяет начинаю-
щим программистам напрямую манипулировать данными. Посколь-
ку нет никаких средств для чтения входной информации из файлов
или устройств хранения, новичкам не нужно тратить драгоценное
время на выяснение особенностей их использования. Во-вторых,
среда разработки четко отделяет данные и операции с ними от вво-
да и вывода информации из «реального мира». В настоящее время
это разделение считается настолько фундаментальным для систем-
ного проектирования программного обеспечения, что получило соб-
ственное название: архитектура модель-представление-контроллер
(Model-View-Controller, MVC). Работая в DrRacket, начинающие про-
граммисты естественным путем знакомятся с этой фундаментальной
идеей программной инженерии.

Применение навыков
Приобретенные в процессе обучения навыки проектирования про-
грамм находят системное применение в двух направлениях: в про-
граммировании вообще и в программировании электронных таблиц,
синтезаторов, таблиц стилей и даже текстовых процессоров в част-
ности. Как показывают наши наблюдения, процесс проектирования,
представленный в рецепте 1, легко перенести практически на любой
язык программирования и можно использовать для разработки как
коротких, насчитывающих десяток строк, так и длинных программ,
состоящих из десятков тысяч строк кода. Конечно, необходимо какое-
то время, чтобы осмыслить и адаптировать процесс проектирования
ко всему спектру языков и к разным масштабам программ; но как

18 Вступление

только он станет второй натурой, его применение становится есте-
ственным и начинает приносить выгоду.

Обучение проектированию программ также означает обретение
двух универсальных навыков. Проектирование программ, безуслов-
но, дает те же аналитические навыки, что и математика, особенно
алгебра и геометрия. Но, в отличие от математики, работа с про-
граммами – это активный подход к обучению. Процесс создания
программного обеспечения включает немедленную обратную связь
и тем самым способствует исследованиям, экспериментам и само
оценке. Результатом, как правило, являются интерактивные продук-
ты, создание которых дает более мощное чувство удовлетворенности,
чем решение упражнений в учебниках.

Проектирование программ тренирует не только математические
навыки, но также навыки чтения и письма. Даже самые маленькие
задачи проектирования формулируются в текстовом виде. Без проч-
ных навыков чтения и понимания прочитанного невозможно про-
ектировать программы, которые решают более или менее сложные
задачи. И наоборот, методы проектирования программ заставляют
разработчика излагать свои мысли правильным и точным языком.
Фактически, усваивая рецепт проектирования, учащийся одновре-
менно совершенствует свои навыки артикуляции.

Для иллюстрации взгляните еще раз на описание процесса проек-
тирования в рецепте 1. В нем говорится, что проектировщик должен:

1)	� проанализировать постановку задачи, обычно обозначаемую
словом «задача»;

2)	 извлечь и абстрактно выразить ее суть;
3)	 проиллюстрировать суть примерами;
4)	 определить макет на основе этого анализа;
5)	 получить результаты и сопоставить их с ожиданиями;
6)	 доработать продукт с учетом неудачных проверок и тестов.

Каждый шаг требует анализа, описания, точности, сосредоточенно-
сти и внимания к деталям. Любой опытный предприниматель, инже-
нер, журналист, юрист, ученый и любой другой профессионал сможет
подтвердить, насколько эти навыки важны в повседневной работе.
Практика проектирования программ – на бумаге и в DrRacket – это
приятный способ приобретения навыков.

Точно так же совершенствование проекта не ограничивается ин-
форматикой и созданием программ. Этим занимаются и архитекто-
ры, и композиторы, и писатели, и другие профессионалы. Они на-
чинают с идей в голове и каким-то образом формулируют их суть.
Они уточняют идеи на бумаге, пока продукт не будет максимально
точно отражать мысленное представление. Воплощая идеи на бума-
ге, они используют навыки, аналогичные рецептам проектирования:
рисование, письмо или игра на музыкальном инструменте, чтобы вы-
разить определенные элементы стиля здания, описать характер че-

19Вступление

ловека или сформулировать элементы мелодии. Их продуктивность
в итеративном процессе разработки обусловлена знанием и умением
применять базовые рецепты проектирования в своей сфере и пра-
вильно выбирать наиболее подходящий для текущей ситуации.

Структура книги
Цель этой книги – познакомить читателей, не имеющих практическо-
го опыта, с системным проектированием программ. Параллельно она
знакомит с символическим представлением вычислений – методом объ-
яснения, как работает применение программы к данным. Проще гово-
ря, этот метод обобщает сведения по арифметике и алгебре, которые
учащиеся получают в начальной и средней школах соответственно.
Но пусть вас это не пугает. В DrRacket имеется механизм пошаговых
вычислений, способный иллюстрировать такие вычисления по шагам.

Книга состоит из шести частей, разделенных пятью интермеццо,
и обрамляется прологом и эпилогом. Основные части посвящены
проектированию программ, а промежуточные интермеццо вводят
дополнительные понятия, касающиеся механики программирования
и вычислений.

Пролог – это краткое введение в простое программирование. В нем
объясняется, как реализовать простую анимацию на *SL. Прочитав
его, любой новичок почувствует воодушевление и подавленность од-
новременно. Поэтому в последнем примечании объясняется, почему
обычное программирование – это ошибочный путь, и как системный
и последовательный подход к проектированию программ устраняет
чувство страха, которое обычно испытывает каждый начинающий
программист.

За прологом следуют основные части книги.

zz Часть I описывает наиболее фундаментальные понятия си-
стемного проектирования на простых примерах. Основная
идея заключается в том, что проектировщики обычно име-
ют некоторое представление о том, какие данные программа
должна принимать и производить. По этой причине при си-
стемном подходе к проектированию необходимо извлечь как
можно больше подсказок из описания данных, поступающих
в программу и исходящих из нее. Для простоты эта часть на-
чинается с атомарных данных – чисел, изображений и т. д., –
а затем постепенно вводит новые способы описания данных:
интервалы, перечисления, структуры и их комбинации.

zz Интермеццо 1 подробно описывает язык обучения: его сло-
варь, грамматику и значение. Все вместе это обычно называют
синтаксисом и семантикой. Разработчики программ использу-
ют эту модель вычислений для прогнозирования действий их
творения после запуска или для анализа ошибок.

20 Вступление

zz Часть II дополняет часть I средствами описания наиболее ин-
тересных и полезных форм данных: составных данных произ-
вольного размера. Программист может продолжать использо-
вать типы данных из части I для представления информации,
но эти типы всегда имеют фиксированную глубину и ширину.
Эта часть демонстрирует, как небольшое обобщение позволяет
перейти к данным произвольного размера. Затем мы переклю-
чим свое внимание на системное проектирование программ,
обрабатывающих такие данные.

zz Интермеццо 2 вводит краткую и мощную нотацию для записи
больших объемов данных: цитирование и антицитирование.

zz Часть III наглядно демонстрирует сходство многих функций из
части II. Никакой язык программирования не должен застав-
лять программистов создавать фрагменты кода, настолько по-
хожие друг на друга. И наоборот, во всяком хорошем языке про-
граммирования есть способы устранения подобного сходства.
Ученые-информатики называют этап устранения сходства аб-
страгированием, а его результат – абстракцией. Они знают, что
абстракции значительно повышают продуктивность програм-
миста. По этой причине в данной части будут представлены ре-
цепты создания и использования абстракций.

zz Интермеццо 3 преследует две цели. Во-первых, здесь вводится
понятие лексической области видимости, когда язык програм-
мирования связывает каждое вхождение имени с его опреде-
лением, которое программист может найти, просматривая код.
Во-вторых, объясняется суть библиотеки с дополнительными
механизмами абстракции, включая так называемые циклы for.

zz Часть IV обобщает часть II и явно вводит идею итеративного
уточнения в словарь понятий проектирования.

zz Интермеццо 4 объясняет и иллюстрирует, почему десятичные
числа работают таким странным образом во всех языках про-
граммирования. Представленные здесь основные факты дол-
жен знать каждый начинающий программист.

zz Часть V добавляет новый принцип дизайна. Структурного про-
ектирования и абстракции вполне достаточно для решения
большинства задач, с которыми сталкиваются программисты,
но иногда этого мало для создания «производительных» про-
грамм. То есть программам, созданным с применением прин-
ципов структурного проектирования, может потребоваться
слишком много времени или энергии для вычисления желае-
мых ответов. Поэтому ученые-информатики заменяют такие
программы, созданные с применением принципов структур-
ного проектирования, программами, способными извлекать
выгоду из глубокого понимания предметной области. В этой
части книги показано, как спроектировать большой класс
именно таких программ.

21Вступление

zz Интермеццо 5 использует примеры из части V для иллюстра-
ции представлений ученых-информатиков о производитель-
ности.

zz Часть VI добавляет последний трюк в инструментарий проек-
тировщиков: аккумуляторы. Если говорить упрощенно, акку-
мулятор добавляет «память» в функции. Добавление памяти
значительно улучшает производительность функций из пер-
вых четырех частей книги, созданных с применением принци-
пов структурного проектирования. Для специальных программ
из части V аккумуляторы могут даже гарантировать нахожде-
ние ответа.

zz Эпилог: что дальше – это одновременно оценка пройденного
и взгляд в будущее.

Читатели, занимающиеся самообразованием самостоятельно,
должны проработать всю книгу, от первой до последней страницы.
Под словом «проработать» мы подразумеваем, что они должны ре-
шить все упражнения или, по крайней мере, знать, как их решать.

Преподаватели тоже должны охватить как можно больше, начиная
с пролога и заканчивая эпилогом. Наш опыт преподавания показы-
вает, что это выполнимо. Как правило, мы организуем наши курсы
так, чтобы слушатели в течение семестра писали большую и увлека-
тельную программу. Однако мы понимаем, что могут быть обстоя-
тельства, диктующие значительные сокращения, и вкусы некоторых
преподавателей требуют иных способов использования книги.

На рис. 1 изображена навигационная схема для тех, кто предпочи-
тает получать знания выборочно. Эта схема представляет собой граф
зависимостей. Сплошная стрелка от одного элемента к другому пред-
полагает обязательный порядок чтения; например, прежде чем пере-
йти к части II, обязательно нужно изучить часть I. Пунктирные стрел-
ки, напротив, обозначают предлагаемый маршрут; например, читать
пролог перед остальной частью книги необязательно.

Вот три возможных пути изучения книги, которые можно предло-
жить, основываясь на этой схеме:

zz преподаватель старшей школы может пройти с учениками (на-
сколько это возможно) части I и II, включая небольшой проект;

zz преподаватель университета с квартальной системой обучения
может сосредоточиться на части I, части II, части III и части V,
а также интермеццо по *SL и области видимости;

zz преподаватель университета с семестровой системой обучения
может предпочесть как можно раньше охватить компромиссы
производительности в проектировании. В этом случае мы мо-
жем порекомендовать изучить части I и II, а затем раздел об
аккумуляторах в части VI, который не зависит от части V. Пос
ле этого можно углубиться в интермеццо 5 и затем охватить
остальную часть книги.

22 Вступление

Пролог

*SL

Природа чисел

Цитирование

Область видимости
и абстракция

Стоимость вычислений

Эпилог

I

II

III IV V VI

Рис. 1. Зависимости между частями книги и интермеццо

Повторение примеров и упражнений. Повествование в книге
снова и снова возвращается к определенным упражнениям и при-
мерам. Например, виртуальные домашние животные встречаются
повсюду в части I и иногда даже в части II. Точно так же в обеих час
тях, I и II, рассматриваются альтернативные подходы к реализации
интерактивного текстового редактора. В части V появляются графы,
которые перекочевывают в часть VI. Цель этих повторений – последо-
вательное уточнение и закрепление изученного. Мы призываем пре-
подавателей использовать в своей работе эти примеры и упражнения
или создать свои подобные последовательности.

Различия между изданиями
Второе издание «Как проектировать программы» имеет несколько
важных отличий от первого издания:

1)	� подчеркивает разницу между проектированием всей програм-
мы и отдельных функций, составляющих ее. В частности, в этом
издании основное внимание уделяется программам двух ти-
пов: управляемым событиями (с графическим интерфейсом
и сетевым) и неинтерактивным;

2)	� проектирование программы на этапе планирования осуществ
ляется сверху вниз, а на следующем за ним этапе построения –

23Вступление

снизу вверх. Мы явно показываем, как интерфейсы библиотек
определяют форму элементов программы. В частности, на са-
мом первом этапе проектирования программы создается спи-
сок желаемых функций. Да, идея списка желаний присутствует
и в первом издании, но во втором издании она рассматривает-
ся как явный элемент дизайна;

3)	� выполнимость пункта из списка желаний зависит от рецепта
проектирования функции, о чем рассказывается в шести ос-
новных частях книги;

4)	� ключевым элементом структурного проектирования
является определение функций, являющихся компози-
цией других функций. Такая композиционная органи-
зация особенно полезна в мире неинтерактивных про-
грамм. Как и порождающая рекурсия, для правильной
композиции требуется озарение и признание того факта, что по-
следовательная обработка промежуточных результатов несколь-
кими функциями упрощает общий процесс проектирования. Этот
подход тоже требует составить список желаний, но при формули-
ровании этих желаний необходимо тщательно проработать опре-
деления промежуточных данных. Это издание книги включает
ряд явных упражнений по композиционному проектированию;

5)	� тестирование всегда было частью нашей философии проекти-
рования, однако языки обучения и DrRacket начали обеспечи-
вать достаточно полную его поддержку только в 2002 году, уже
после выхода первого издания. Данное новое издание в значи-
тельной степени полагается на эту поддержку тестирования;

6)	� из этого издания мы исключили тему проектирования импера-
тивных программ. Старые главы можно найти на нашем сайте1,
а их адаптированные версии войдут во второй том данной се-
рии «How to Design Components»;

7)	� в этом издании изменены обучающие пакеты с примерами
и упражнениями. Предпочтительным стилем связывания этих
библиотек считается применение инструкции require, но вы все
еще можете добавлять их через меню в DrRacket;

8)	� наконец, во втором издании несколько изменились термино-
логия и обозначения:

Второе издание Первое издание
сигнатура контракт
детализация объединение
'() empty

#true true

#false false

Последние три отличия значительно улучшают цитирование списков.

1	 https://htdp.org/2003-09-26/Book/. – Прим. перев.

Мы благодарим Кэти
Фислер (Kathi Fisler)
за то, что обратила
наше внимание на этот
момент.

https://htdp.org/2003-09-26/Book/

Пролог: как писать программы

Когда вы были маленьким ребенком, родители учили вас считать на
пальцах: «1 + 1 равно 2»; «1 + 2 равно 3» и т. д. Затем они спрашивали:
«А сколько будет 3 + 2?» – и вы считали пальцы одной руки. Они про-
граммировали, а вы вычисляли. В каком-то смысле это все, что нужно
для программирования и вычислений.

Теперь пришло время поменяться ролями. Запус
тите DrRacket. Перед вами откроется окно, как пока-
зано на рис. 21. Выберите пункт Choose language (Выбрать язык...)
в меню Language (Язык), после чего в открывшемся диалоге выбери-
те пункт Teaching Languages (Учебные языки) и внутри этого пункта,
в списке под заголовком How to Design Programs (Как проектиро-
вать программы), выберите пункт Beginning Student (Начинающий
студент, то есть язык для начинающих студентов – BSL) и щелкните
на кнопке ОК. Теперь вы можете начать программировать, а DrRacket
будет вашим ребенком. Начните с простейших вычислений. Введите

(+ 1 1)

в верхней половине окна DrRacket, щелкните на кнопке RUN (Выпол-
нить) – и в нижней половине появится число 2.

Рис. 2. Общий вид окна DrRacket

1	 Редактор DrRacket имеет русифицированный интерфейс. Чтобы включить его, вы-
берите пункт меню Help > Работать с русским интерфейсом DrRacket. После
этого откроется диалог, предупреждающий, что для смены языка интерфейса не-
обходимо перезапустить редактор. Щелкните на кнопке Accept and Exit, или При-
менить и выйти, а затем снова запустите DrRacket. – Прим. перев.

Загрузите DrRacket
с веб-сайта проекта.

30 Пролог: как писать программы

Как видите, программировать ничуть не сложно. Вы задаете во-
просы, как если бы DrRacket был ребенком, а DrRacket выполняет
вычисления. Вы также можете попросить DrRacket обработать сразу
несколько запросов:

(+ 2 2)
(* 3 3)
(- 4 2)
(/ 6 2)

После щелчка на кнопке RUN (Выполнить) и в нижней половине
окна появятся числа 4 9 2 3 – ожидаемые результаты.

Теперь приостановимся ненадолго и проясним некоторые термины.

zz Верхняя половина окна DrRacket называется областью опреде-
лений. В этой области создаются программы, а процесс их соз-
дания называется редактированием. Сразу после добавления
нового слова или изменения чего-либо в области определений
в верхнем левом углу появляется кнопка SAVE (Сохранить).
После первого щелчка на кнопке SAVE (Сохранить) DrRacket
попросит указать имя файла, чтобы сохранить вашу программу.
После того как область определений будет связана с файлом,
последующие щелчки на кнопке SAVE (Сохранить) помогут вам
гарантировать своевременное сохранение содержимого обла-
сти определений в этом файле.

zz Программы состоят из выражений. Вы уже не раз видели выра-
жения на уроках математики. Выражение представляет собой
либо обычное число, либо что-то, что начинается с открываю-
щей круглой скобки «(» и заканчивается парной ей закрываю-
щей круглой скобкой «)». DrRacket распознает парные скобки
и закрашивает область между скобками.

zz После щелчка на кнопке RUN (Выполнить) DrRacket вычисляет
выражения в области определений и выводит полученные ре-
зультаты в области взаимодействий. Затем DrRacket, ваш вер-
ный слуга, выводит приглашение к вводу (>) и ждет ваших ко-
манд. Этим приглашением DrRacket сигнализирует, что готов
к вводу дополнительных выражений, которые он вычислит
и выведет результат точно так же, как если бы выражение было
введено в области определений:

> (+ 1 1)
2

Введите выражение рядом с приглашением, нажмите клавишу
Return или Enter на клавиатуре и посмотрите, как DrRacket от-
реагирует на результат. Вы можете ввести столько выражений,
сколько пожелаете, например:

> (+ 2 2)
4

31Пролог: как писать программы

> (* 3 3)
9
> (- 4 2)
2
> (/ 6 2)
3
> (sqr 3)
9
> (expt 2 3)
8
> (sin 0)
0
> (cos pi)
#i-1.0

Внимательно рассмотрите последний номер. Префиксом «#i» DrRa
cket сообщает: «На самом деле я не знаю точного числа, поэтому по-
лучите то, что у меня есть, – неточное (inexact) число». В отличие от
вашего калькулятора или других систем программирования, DrRacket
честен. Когда точное число неизвестно, в ответ добавляется специ-
альный префикс. Позже мы покажем настоящие странности, которые
творятся с «компьютерными числами», и тогда вы по достоинству
оцените предупреждения, которые выводит DrRacket.

Возможно, вам интересно узнать: может ли DrRacket складывать
больше двух чисел сразу? Да, может! Сделать это можно двумя раз-
ными способами:

> (+ 2 (+ 3 4))
9
> (+ 2 3 4)
9

Первый способ – использование вложенных арифметиче-
ских выражений. Он известен всем нам еще со школы. Вто-
рой – арифметические выражения на языке BSL; это более
естественный способ, потому что в языке BSL операции
и числа всегда заключаются в круглые скобки.

В BSL всегда, когда требуется выполнить арифметическую
операцию, выражение начинается с открывающей скобки,
за которым следуют: символ операции, скажем +; числа,
к которым нужно применить операцию (через пробел или
даже через разрывы строк); и, наконец, закрывающая скоб-
ка. Элементы, следующие за операцией, называются операндами. При
использовании вложенных выражений эти выражения сами выступа-
ют в роли операндов во вмещающем выражении, поэтому

> (+ 2 (+ 3 4))
9

является вполне допустимой программой. Вложенные выражения
можно использовать в любом месте и в любых количествах:

> (+ 2 (+ (* 3 3) 4))
15

Эта книга не научит
вас программированию
на языке Racket, даже
притом что редактор
называется DrRacket.
Прочитайте вступле-
ние, особенно раздел
«DrRacket и языки
обучения», где подробно
рассказывается
о выборе языка.

32 Пролог: как писать программы

> (+ 2 (+ (* 3 (/ 12 4)) 4))
15
> (+ (* 5 5) (+ (* 3 (/ 12 4)) 4))
38

И нет никаких ограничений на вложенность, кроме вашего терпе-
ния.

Естественно, выполняя вычисления, DrRacket использует правила,
которые известны вам из математики. Как и вы, он может опреде-
лить результат сложения, только когда все операнды являются обыч-
ными числами. Если операнд представлен операторным выражени-
ем в скобках, начинающимся с открывающей скобки «(» и символа
операции, то DrRacket сначала вычислит результат этого вложенного
выражения. В отличие от вас, ему не приходится задумываться о том,
какое выражение вычислить первым, потому что это первое правило
есть единственное правило.

За удобства DrRacket приходится платить скрупулезным отноше-
нием к скобкам. Вы должны ввести все необходимые круглые скобки,
и при этом не должно быть лишних скобок. Например, ваш учитель
математики может терпимо относиться к присутствию лишних ско-
бок, но это не относится к BSL. Выражение (+ (1) (2)) содержит лиш-
ние круглые скобки, и DrRacket однозначно сообщит вам об этом:

> (+ (1) (2))
function call:expected a function after the open parenthesis,
found a number

(вызов функции: после открывающей круглой скобки ожидается
функция, а обнаружено число).

Однако, привыкнув к особенностям языка BSL, вы увидите, что эта
цена не так уж высока. Во-первых, вы можете использовать операции
сразу с несколькими операндами, например:

> (+ 1 2 3 4 5 6 7 8 9 0)
45
> (* 1 2 3 4 5 6 7 8 9 0)
0

Если вы не знаете, что делает операция с несколькими
операндами, введите пример в области взаимодействия
и нажмите return; DrRacket позволяет экспериментировать
и узнавать, работает ли тот или иной прием, и как. Или об-
ратитесь к документации HelpDesk. Во-вторых, читая про-

граммы, написанные другими, вам никогда не придется задаваться
вопросом, какие выражения вычисляются в первую очередь. Круглые
скобки и вложенность сразу скажут вам об этом.

В этом контексте «программировать» значит записывать понятные
арифметические выражения, а «вычислять» – определять их значе-
ние. С DrRacket вы легко освоите этот вид программирования и вы-
числений.

Как можно заметить,
в онлайн-версии книги

названия операций свя-
заны с документацией

в HelpDesk.

33Пролог: как писать программы

Арифметика, арифметика...
Если бы в программировании использовались только числа
и арифметические операции, то этот вид деятельности был
бы таким же скучным, как уроки математики. К счастью,
в программировании можно использовать не только числа,
но также текст, флаги истинности, изображения и многое другое.

Прежде всего вы должны запомнить, что текст в BSL – это любая
последовательность символов, введенных с клавиатуры, заключен-
ная в двойные кавычки ("). Мы называем это строкой. То есть "hel-
lo world" – это типичная строка, и, «вычисляя» такие строки, DrRacket
просто выводит их в области взаимодействий, как число:

> "hello world"
"hello world"

Многие люди пишут свои первые программы, которые выводят
именно эту строку.

Вам также необходимо знать, что DrRacket поддерживает не только
арифметику чисел, но и арифметику строк. Вот два примера, иллюст
рирующих эту форму арифметики:

> (string-append "hello" "world")
"helloworld"
> (string-append "hello " "world")
"hello world"

string-append, как и +, тоже является оператором; он создает новую
строку, объединяя все строки, следующие за ним. Как показывает
первое взаимодействие, string-append объединяет строки буквально,
не добавляя ничего между ними: ни пробелов, ни запятых, ничего.
Поэтому если вы хотите увидеть фразу "hello world", то должны сами
добавить пробел к одному из этих слов; именно это показывает вто-
рое взаимодействие. Конечно, самый естественный способ составить
фразу из двух слов – ввести

(string-append "hello" " " "world")

потому что string-append, так же как +, может обрабатывать любое ко-
личество операндов.

Со строками можно выполнять не только сложение. Вы
можете извлекать фрагменты из строк, переворачивать их,
преобразовывать все буквы в верхний (или нижний) регистр,
удалять пробелы слева и справа и т. д. И что самое важное,
вам не нужно ничего запоминать. Чтобы узнать, какие опе-
рации можно выполнять со строками, достаточно поискать
в HelpDesk.

Заглянув в раздел с описанием простейших операций, до-
ступных в BSL, можно увидеть, что простейшие (иногда их

Шучу: математика –
увлекательнейший
предмет, но нам она
пока не особенно нужна.

Открыть HelpDesk
можно, нажав
клавишу F1 или выбрав
соответствующий
пункт в контекстном
меню. Загляните
в руководство по языку
BSL, в раздел с описа-
нием предопределенных
операций, особенно
операций со строками.

34 Пролог: как писать программы

называют предопределенными или встроенными) операции могут по-
треблять строки и производить числа:

> (+ (string-length "hello world") 20)
31
> (number->string 42)
"42"

Также есть операция, преобразующая строку в число:

> (string->number "42")
42

Если вы ожидали увидеть в результате строку «forty-two» («сорок
два») или что-то в этом роде, то извините: строковый калькулятор –
не совсем то, что вам нужно.

Тем не менее последнее выражение вызывает вопрос: что полу-
чится, если применить операцию string->number к строке, которая не
является изображением числа в кавычках? В этом случае операция
вернет результат другого типа:

> (string->number "hello world")
#false

Это не число и не строка; это логическое значение. В отличие от
чисел и строк, логические значения бывают только двух видов: #true
и #false. Первое обозначает истину, а второе – ложь. В DrRacket имеет-
ся несколько операций для объединения логических значений:

> (and #true #true)
#true
> (and #true #false)
#false
> (or #true #false)
#true
> (or #false #false)
#false
> (not #false)
#true

возвращающих результаты, которые соответствуют названиям опе-
раций. (Не знаете, что означают операции and, or и not? Все просто:
(and x y) вернет истину, если x и y истинны; (or x y) вернет истину, если
либо x, либо y, либо оба истинны; и (not x) вернет истину, только если
x ложно.)

Иногда бывает полезно «преобразовать» два числа в логическое
значение:

> (> 10 9)
#true
> (< -1 0)
#true
> (= 42 9)
#false

35Пролог: как писать программы

Стоп! Попробуйте выполнить следующие три выражения: (> = 10
10), (<= -1 0) и (string=? "Design" "tinker"). Последнее выражение вы-
глядит необычно, но не волнуйтесь, DrRacket справится с ним.

Со всеми этими новыми видами данных – числа, строки и логиче-
ские значения являются данными – и операций легко забыть некото-
рые основы, такие как вложенные выражения:

(and (or (= (string-length "hello world")
 (string->number "11"))
 (string=? "hello world" "good morning"))
 (>= (+ (string-length "hello world") 60) 80))

Что получится в результате вычисления данного выражения? Как
вы это поняли? Вы сами догадались об этом? Или просто ввели выра-
жение в области взаимодействий и нажали клавишу return? Если вы
поступили именно так, то как вы думаете, вы смогли бы определить
результат самостоятельно? В конце концов, если вы не научитесь
предсказывать результат, возвращаемый DrRacket для небольших вы-
ражений, вы не сможете доверять результатам вычислений
более сложных задач.

Прежде чем приступать к изучению «настоящего» про-
граммирования, давайте обсудим еще один вид данных, ко-
торый поможет оживить процесс: изображения. Если вста-
вить изображение в область взаимодействий и нажать кла-
вишу return, вот так:

>

в ответ DrRacket выведет изображение. В отличие от многих других
языков программирования, BSL понимает изображения и поддержи-
вает арифметику с изображениями, по аналогии арифметики с чис-
лами и строками. Проще говоря, ваши программы могут вы-
полнять вычисления с изображениями, и вы можете опери-
ровать ими в области взаимодействий. Более того, програм-
мисты на BSL, как и программисты на других языках про-
граммирования, создают библиотеки, которые могут ока-
заться полезными для других. Использование таких библио-
тек напоминает расширение словаря новыми словами. Мы
называем такие библиотеки учебными пакетами, потому что
они помогают в обучении.

Одна из важнейших библиотек – 2htdp/image – поддержи-
вает операции определения ширины и высоты изображения:

(* (image-width) (image-height))

После добавления библиотеки в программу щелчок на кнопке RUN
(Выполнить) даст вам число 1176 – площадь изображения с размерами
28 на 42.

Для вставки
изображений в DrRacket,
например изображения
ракеты, используйте
меню Insert (Вставка).
Или скопируйте
и вставьте изображение
из вашего браузера.

Добавьте выражение
(require 2htdp/image)
в область определений
или выберите пункт
Add Teachpack (Доба-
вить учебный пакет)
в меню Language (Язык)
и выберите пакет image
в списке Preinstalled
HtDP/2e Teachpack
(Предустановленные
учебные пакеты
HtDP/2e).

36 Пролог: как писать программы

Вам не обязательно искать изображения в Google, чтобы вставлять
их в программы DrRacket с помощью меню Insert (Вставка). Можете
поручить DrRacket создавать простые изображения с нуля:

> (circle 10 "solid" "red")

> (rectangle 30 20 "outline" "blue")

Когда результатом выражения является изображение, DrRacket
рисует его в области взаимодействия. Но в остальном программа
BSL работает с изображениями как с данными, подобными числам.
В частности, в BSL есть операции для объединения изображений так
же, как и операции для сложения чисел или добавления строк:

> (overlay (circle 5 "solid" "red")
 (rectangle 20 20 "solid" "blue"))

Наложение этих изображений в обратном порядке дает в результа-
те сплошной синий квадрат:

> (overlay (rectangle 20 20 "solid" "blue")
 (circle 5 "solid" "red"))

Давайте остановимся и на мгновение задумаемся над последним
результатом.

Как видите, операция overlay больше похожа на string-append, чем
на +: она «складывает» изображения так же, как string-append «склады-
вает» строки, а + вычисляет сумму чисел. Вот еще одна иллюстрация:

> (image-width (square 10 "solid" "red"))
10
> (image-width
 (overlay (rectangle 20 20 "solid" "blue")
 (circle 5 "solid" "red")))
20

Эти взаимодействия с DrRacket вообще ничего не рисуют; они прос
то измеряют ширину получившегося изображения.

Следует упомянуть еще две операции: empty-scene и place-image.
Первая создает сцену, особый вид прямоугольника, а вторая помеща-
ет изображение в эту сцену:

(place-image (circle 5 "solid" "green")
 50 80
 (empty-scene 100 100))

В результате получается:

Не совсем так. На самом
деле в полученном

изображении отсут-
ствует сетка.

Мы наложили сетку
на пустую сцену, чтобы

вы могли видеть, где
именно находится

зеленая точка.

37Пролог: как писать программы

Как можно видеть на этом изображении, начало координат (или
(0,0)) находится в верхнем левом углу. В отличие от геометрии, ось Y
направлена вниз, а не вверх. В остальном изображение показывает
именно то, что можно было ожидать: зеленый диск с центром в точке
с координатами (50,80) в пустом прямоугольнике 100 на 100.

Подведем некоторые итоги. Под программированием подразуме-
вается запись арифметических выражений, но при этом вы не огра-
ничены одними только скучными числами. В языке BSL под ариф-
метикой подразумевается арифметика чисел, строк, логических зна-
чений и даже изображений. Однако под вычислением по-прежнему
подразумевается определение значения выражения, разве что это
значение может быть строкой, числом, логическим значением или
изображением.

Теперь вы готовы писать программы, которые заставляют ракеты
летать.

Входы и выходы
Программы, которые мы писали до сих пор, довольно незатейливы.
Мы записывали выражение или несколько выражений, щелкали на
кнопке RUN (Выполнить) и просматривали получившиеся результа-
ты. Если снова щелкнуть на кнопке RUN (Выполнить), DrRacket вы-
ведет точно такие же результаты. Фактически вы можете щелкать на
кнопке RUN (Выполнить) сколько угодно раз, и результаты от этого
не изменятся. Проще говоря, наши программы больше похожи на
вычисления на карманном калькуляторе, с той лишь разницей, что
DrRacket может выполнять вычисления с любыми видами данных,
а не только с числами.

Это и хорошо, и плохо. Хорошо, потому что программирование
и вычисления являются естественным обобщением калькулятора.
Плохо, потому что цель программирования – обрабатывать большое
количество данных и получать много разных результатов, выполняя
более или менее одинаковые вычисления. (Программы также должны
вычислять эти результаты быстро, по крайней мере быстрее, чем мы.)
То есть вам нужно еще многое узнать, прежде чем вы научитесь про-
граммировать. Но не волнуйтесь: обладая знаниями об арифметике
чисел, строк, логических значений и изображений, вы почти готовы
написать программу, которая создает фильмы, а не просто выводит
какое-нибудь простенькое сообщение, такое как «hello world». И этим
мы займемся дальше.

На всякий случай, если вы не знали этого, фильм – это последова-
тельность изображений, которые быстро сменяют друг друга на экра-
не. Если бы ваши учителя математики знали об «арифметике изо-
бражений», которую вы видели в предыдущем разделе, то наверняка
научили бы вас создавать фильмы вместо скучных числовых после-
довательностей. Вот еще одна такая таблица:

38 Пролог: как писать программы

x = 1 2 3 4 5 6 7 8 9 10
y = 1 4 9 16 25 36 49 64 81 ?

Ваши учителя могли бы попросить вас вставить недостающее чис-
ло в ячейку со знаком вопроса «?».

Как оказывается, снять фильм не сложнее, чем заполнить такую
таблицу чисел. Действительно, все дело в таких таблицах:

x = 1 2 3 4
y =

?

Говоря более конкретно, ваш учитель мог бы предложить вам на-
рисовать четвертое, пятое и 1273-е изображения, потому что фильм –
это просто длинная последовательность изображений, сменяющих
друг друга примерно 20 или 30 раз в секунду. То есть вам понадобится
от 1200 до 1800 таких изображений, чтобы из них сконструировать
фильм продолжительностью в одну минуту.

Вы также можете вспомнить, что ваши учителя могли просить не
только вставить четвертое или пятое число в некоторой последова-
тельности, но и указать выражение, определяющее любой элемент
последовательности по заданному значению x. В числовом примере
учитель мог бы пожелать увидеть что-то вроде этого:

y = x · x.

Если в эту формулу вместо x подставить 1, 2, 3 и т. д., то в результате
получатся числа 1, 4, 9 и т. д., в точности как показано в таблице. Для
последовательности изображений то же самое можно выразить при-
мерно так:

y = изображение, содержащее точку на x2 пикселей
ниже верхнего края.

Важно отметить, что эта формулировка обозначает не простое вы-
ражение, но функцию.

На первый взгляд функции похожи на выражения с символом y
слева, за которым следует знак = и выражение. Однако это не выра-
жения, а функции, которые вы могли часто видеть в школе на уроках
математики. Но в DrRacket функции записываются немного иначе:

(define (y x) (* x x))

Слово define говорит: «считать y функцией», которая вычисляет зна-
чение подобно выражению. Однако значение функции зависит от
значения того, что называется входом. Этот факт мы выражаем с по
мощью (y x). Поскольку входное значение заранее неизвестно, то для
его представления мы используем имя. Здесь, следуя математиче-

39Пролог: как писать программы

ской традиции, мы использовали имя x для обозначения неизвест-
ного входа; но довольно скоро мы будем использовать другие имена.

Эта вторая часть означает, что в функцию нужно передать одно
число – для x, – чтобы вычислить конкретное значение для y. В этом
случае DrRacket подставит полученное значение x в выражение, свя-
занное с функцией, в данном примере это выражение (* x x). После
замены x значением, например 1, DrRacket сможет вычислить резуль-
тат выражения, который также называется выходом функции.

Щелкните на кнопке RUN (Выполнить) и обратите внимание, что
ничего не произошло. В области взаимодействия не появилось ниче-
го нового, как будто вы ничего и не вводили и в DrRacket ничего не
изменилось. Но на самом деле это не так. Вы фактически определили
функцию и сообщили DrRacket о ее существовании. Теперь редактор
готов использовать эту функцию. Введите

(y 1)

в области взаимодействий и убедитесь, что в ответ DrRacket
вывел число 1. В DrRacket выражение (y 1) называется при-
менением функции. Попробуйте выполнить

(y 2)

и убедитесь, что в ответ DrRacket вывел 4. Конечно, все эти выраже-
ния можно также ввести в области определений и щелкнуть на кноп-
ке RUN (Выполнить):

(define (y x) (* x x))
(y 1)
(y 2)
(y 3)
(y 4)
(y 5)

В ответ DrRacket выведет: 1 4 9 16 25 – числа из таблицы. Теперь
определите недостающее число.

С нашей точки зрения функции дают весьма экономичный спо-
соб вычисления множества интересующих нас значений с помощью
одного выражения. В действительности программы – это функции;
и, освоив функции, вы будете знать о программировании почти все,
что нужно. Учитывая важность функций, давайте обобщим то, что мы
уже знаем о них.

zz Во-первых,

(define (ИмяФункции ИмяВхода) Тело)

– это определение функции. Об этом говорит ключевое слово de-
fine (определить). По сути, определение состоит из трех частей:
двух имен и выражения. Первое имя – это имя функции. Вы
будете использовать его, когда вам понадобится применить

В математике запись y(1)
тоже называется приме-
нением функции, просто
ваши учителя забыли вам
сказать об этом.

40 Пролог: как писать программы

функцию. Второе имя, называемое параметром, – это вход
функции, который неизвестен до фактического применения
функции. Выражение с именем Тело вычисляет выход (резуль-
тат) функции для определенного входа.

zz Во-вторых,

(ИмяФункции ВыражениеАргумента)

– это применение функции. Первая часть сообщает DrRacket,
какую функцию следует применить, а вторая часть – это вход,
к которому применяется функция. Если бы вы сейчас читали
руководство для Windows или Mac, в нем было бы написано, что
это выражение запускает приложение с именем ИмяФункции, кото-
рое получает на вход значение ВыражениеАргумента и обрабатыва-
ет его. Как всякое другое выражение, ВыражениеАргумента может
быть простым фрагментом данных или глубоко вложенным
выражением.

Функции могут принимать и возвращать не только числа, но и все
остальные виды данных. Давайте проверим это и создадим функцию,
имитирующую вторую таблицу, с изображениями цветной точки, по-
добно тому, как первая функция имитировала числовую таблицу. По-
скольку в школе вам не рассказывали, как в выражениях создавать
изображения, начнем с простого. Помните пустую сцену? Мы кратко
упоминали о ней в конце предыдущего раздела. Если создать ее в об-
ласти взаимодействий, как показано ниже:

> (empty-scene 100 60)

то DrRacket нарисует пустой прямоугольник, который называется сце-
ной. В сцену можно добавлять изображения с помощью place-image:

> (place-image 50 23 (empty-scene 100 60))

Представьте, что ракета – это точка на рисунках, показанных в таб
лице выше. Разница лишь в том, что видеть ракету интереснее.

Теперь вы должны заставить ракету опуститься, как точку в табли-
це выше. В предыдущем разделе вы узнали, как добиться этого эф-
фекта: нужно увеличивать координату y, передаваемую в place-image:

> (place-image 50 20 (empty-scene 100 60))

> (place-image 50 30 (empty-scene 100 60))

41Пролог: как писать программы

> (place-image 50 40 (empty-scene 100 60))

Теперь осталось только определить способ, который позволит
с легкостью создать множество таких сцен, и быстро отобразить по
порядку.

Листинг 1. Посадка ракеты (версия 1)
(define (picture-of-rocket height)

 (place-image 50 height (empty-scene 100 60)))

Первую цель можно достичь с помощью функции в лис
тинге 1. Да, это определение функции. Вместо y ей дано
имя picture-of-rocket, которое ясно сообщает, что выводит
функция: сцену с ракетой. Вместо x параметру в определе-
нии функции дано имя height, которое четко сообщает, что это число,
которое определяет высоту местоположения ракеты. Выражение с те-
лом функции в точности повторяет выражения, с которыми мы толь-
ко что экспериментировали, за исключением того, что в нем вместо
числа используется height. Теперь мы легко можем создать все необ-
ходимые изображения с помощью одной функции:

(picture-of-rocket 0)
(picture-of-rocket 10)
(picture-of-rocket 20)
(picture-of-rocket 30)

Введите эти выражения в области определений или в области взаи-
модействий, и вы получите ожидаемые сцены.

Для достижения второй цели вы должны познакомиться
с одной элементарной операцией из библиотеки 2htdp/uni-
verse: animate. Щелкните на кнопке RUN (Выполнить) и вве-
дите следующее выражение:

> (animate picture-of-rocket)

Обратите внимание, что выражение аргумента в этом примере –
функция. Не беспокойтесь об использовании функций в качестве ар-
гументов; этот прием прекрасно работает с animate, но пока не пытай-
тесь сами определять такие функции, как animate.

Как только вы нажмете клавишу return, DrRacket вычислит выра-
жение, но не отобразит ни результата, ни даже приглашения к вводу.
Вместо этого откроется другое окно – холст – и запустятся часы, тика-
ющие 28 раз в секунду. С каждым тактом часов DrRacket будет приме-
нять picture-of-rocket к количеству тактов, прошедших с момента вы-
зова animate. Результаты применения этой функции будут отобра-

Язык BSL позволяет
использовать в именах
любые символы, включая
«-» и «.».

Не забудьте добавить
библиотеку 2htdp/
universe в область
определений.

42 Пролог: как писать программы

жаться на холсте и создавать эффект анимационного фильма. Моде-
лирование продолжается до тех пор, пока вы не закроете окно. После
этого animate вернет количество обработанных тактов.

Но откуда берутся изображения в окне? Если в двух словах,
то: animate применяет функцию в своем операнде к числам 0,
1, 2 и т. д. и отображает полученные изображения. Вот более
подробное объяснение:

zz animate запускает часы и считает количество тактов;
zz часы идут со скоростью 28 тактов в секунду;
zz каждый раз, когда завершается очередной такт, animate приме-

няет функцию picture-of-rocket к порядковому номеру текуще-
го такта; и

zz сцена, созданная в результате этого применения, отображается
на холсте.

Это означает, что ракета сначала появляется на высоте 0, затем 1,
потом 2 и т. д., то есть постепенно опускается вниз. Наша трехстроч-
ная программа создает около 100 изображений примерно за 3,5 се-
кунды, а быстрое их отображение создает эффект приземления ра-
кеты.

А теперь обобщим все, что вы узнали в этом разделе. Функции –
это удобный способ обработки больших объемов данных за короткое
время. Вы можете запустить функцию вручную, передав несколько
разных входов, чтобы проверить правильность выходных результа-
тов. Это называется тестированием функции. DrRacket может запус
тить функцию для множества входов с помощью некоторых библио
тек. Естественно, DrRacket может также запускать функции, когда
вы нажимаете клавиши на клавиатуре или манипулируете мышью.
Чтобы узнать, как это сделать, продолжайте читать. И независимо от
того, как запускается применение функции, помните, что программы
(простые) – это функции.

Множество способов вычисления
Если запустить (animate picture-of-rocket), спустя какое-то время ра-
кета исчезнет под землей. Это выглядит странно. Ракеты в старых
фантастических фильмах не тонут в земле; они изящно приземляют-
ся на опоры, и на этом фильм должен заканчиваться.

Эта идея предполагает, что в зависимости от ситуации вычисле-
ния должны выполняться по-разному. В нашем примере программа
picture-of-rocket должна работать «как есть», пока ракета находится
в полете. Однако как только ракета коснется нижней части холста, ее
дальнейшее снижение должно остановиться.

Эта идея не должна быть для вас новой. Даже ваши учителя мате-
матики показывали вам функции, различающие разные ситуации:

В упражнении 298
объясняется, как

организована функция
animate.

43Пролог: как писать программы

Эта функция sign различает три вида входных значений: которые
больше 0, равны 0 и меньше 0. В зависимости от входа результат
функции равен +1, 0 или –1.

Эту функцию легко определить в DrRacket, используя условное вы-
ражение cond:

(define (sign x)
 (cond
 [(> x 0) 1]
 [(= x 0) 0]
 [(< x 0) -1]))

После щелчка на кнопке RUN (Выполнить) вы сможете ис-
пользовать функцию sign как любую другую функцию:

> (sign 10)
1
> (sign -5)
-1
> (sign 0)
0

В общем случае условное выражение имеет следующий
вид:

(cond
 [ВыражениеУсловия1 ВыражениеРезультата1]
 [ВыражениеУсловия2 ВыражениеРезультата2]
 ...
 [ВыражениеУсловияN ВыражениеРезультатаN])

То есть условное выражение cond состоит из некоторого
необходимого количества условных строк. Каждая строка
содержит два выражения: левое обычно называют условием,
а правое – результатом; иногда также используются терми-
ны вопрос и ответ. Чтобы вычислить выражение cond, DrRacket вы-
числяет первое выражение условия, ВыражениеУсловия1. Если оно воз-
вращает #true, то DrRacket заменяет все выражение cond выражением
результата ВыражениеРезультата1, вычисляет его и получившееся значе-
ние возвращает как результат всего выражения cond. Если в резуль-
тате вычисления ВыражениеУсловия1 получится #false, то DrRacket про-
пускает первую строку и переходит ко второй. Если все выражения
условий вернут #false, то DrRacket сообщит об ошибке.

Теперь, зная это, вы можете изменить ход процесса. Цель состоит
в том, чтобы не дать ракете опуститься ниже уровня земли в сцене
размером 100 на 60 пикселей. Поскольку функция picture-of-rocket
принимает высоту, на которой она должна изобразить ракету в сцене,

Откройте новую
вкладку в DrRacket и нач-
ните с чистого листа.

Сейчас самое время
познакомиться с кнопкой
STEP (Шаг). Введите
(sign -5) в области
определений (после
ввода определения функ-
ции sign) и щелкните на
кнопке STEP (Шаг).
Когда появится
новое окно, попробуйте
пощелкать на кнопках
со стрелками влево
и вправо.

44 Пролог: как писать программы

кажется, что достаточно просто сравнить заданную высоту с макси-
мально допустимой.

В листинге 2 приводится уточненное определение функции. В нем
определяется функция с именем picture-of-rocket.v2, чтобы мы мог-
ли различать две версии. Применение разных имен также позволяет
использовать обе функции в области взаимодействий и сравнивать
результаты.

Листинг 2. Посадка ракеты (версия 2)
(define (picture-of-rocket.v2 height)
 (cond
 [(<= height 60)

 (place-image 50 height
 (empty-scene 100 60))]
 [(> height 60)

 (place-image 50 60
 (empty-scene 100 60))]))

Вот как работает оригинальная версия:

> (picture-of-rocket 5555)

А так – вторая:

> (picture-of-rocket.v2 5555)

Какое бы число вы не передали функции picture-of-rocket.v2, если
оно окажется больше 60, то вы получите ту же сцену. Если, к примеру,
выполнить такое выражение:

> (animate picture-of-rocket.v2)

то ракета опустится вниз и на половину своего корпуса уйдет под
землю, после чего остановится.

Стоп! Это именно то, что мы хотели увидеть?
Ракета, погрузившаяся наполовину под землю, смотрится некра-

сиво. Но вы знаете, как исправить этот огрех. Как вы уже видели,
язык BSL поддерживает арифметику изображений. Когда функция
place-image добавляет изображение в сцену, она ориентируется на его
центр, как если бы все изображение было представлено точкой, даже
если оно имеет реальную высоту и реальную ширину. Как вы знаете,
мы можем измерить высоту изображения с помощью image-height. Эта
функция пригодится нам и поможет остановить спуск ракеты в тот
момент, когда ее нижняя часть коснется земли.

Сложив два плюс два, нетрудно догадаться, что высота, на которой
ракета должна прекратить спуск, вычисляется так:

45Пролог: как писать программы

(- 60 (/ (image-height) 2))

Вы можете убедиться в этом, поиграв с самой программой или по-
экспериментировав в области взаимодействий.

Вот первая попытка:

(place-image 50 (- 60 (image-height))
 (empty-scene 100 60))

Теперь замените третий аргумент в примере выше выражением

(- 60 (/ (image-height) 2))

Стоп! Поэкспериментируйте сами и оцените полученные результа-
ты. Какой из них вам больше нравится?

Листинг 3. Посадка ракеты (версия 3)
(define (picture-of-rocket.v3 height)
 (cond

 [(<= height (- 60 (/ (image-height) 2)))

 (place-image 50 height
 (empty-scene 100 60))]

 [(> height (- 60 (/ (image-height) 2)))

 (place-image 50 (- 60 (/ (image-height) 2))
 (empty-scene 100 60))]))

Размышляя и экспериментируя, вы в конечном итоге дойдете до
программы в листинге 3. Если задано какое-то число, представляю-
щее высоту местоположения ракеты, то сначала проверяется, достиг
ли нижний край ракеты на земле. Если не достиг, то местоположение
ракеты в сцене меняется, как и раньше. Иначе изображение ракеты
позиционируется так, чтобы ее нижняя часть касалась земли.

Одна программа, множество определений
Теперь предположим, что ваши друзья посмотрели анимацию и им не
понравился размер холста. Они попросили дать им версию, в которой
сцена имеет размер 200×400. Эта простая просьба заставит вас заме-
нить 100 на 400 в пяти местах программы и 60 на 200 еще в двух местах,
не говоря уже о числе 50, обозначающем «середину холста».

А теперь попробуйте проделать это, чтобы понять, насколько слож-
но выполнить данную просьбу для простенькой пятистрочной про-
граммы. Читая дальше, имейте в виду, что в мире не редкость про-
граммы, состоящие из 50 000, 500 000 или даже 5 000 000 или более
строк программного кода.

В идеальной программе подобные просьбы, такие как изменение
размеров холста, не должны требовать вносить такое большое коли-

46 Пролог: как писать программы

чество изменений. В BSL этого легко добиться с помощью define. Эта
инструкция способна определять не только функции, но также конс
танты, присваивая имена некоторым значениям. Вот как выглядит
определение константы в общем виде:

(define Имя Выражение)

То есть вы можете добавить в программу такое определение:

(define HEIGHT 60)

а в программе использовать HEIGHT везде, где прежде использовалось
число 60. Смысл такого определения очевиден. Каждый раз, встретив
имя HEIGHT во время вычислений, DrRacket будет заменять его числом 60.

Теперь взгляните на код в листинге 7, который реализует это прос
тое изменение, а также присваивает имя изображению ракеты. Ско-
пируйте эту программу в DrRacket, щелкните на кнопке RUN (Выпол-
нить) и введите следующее выражение в области взаимодействий:

> (animate picture-of-rocket.v4)

Убедитесь, что программа работает так же, как и раньше.
Программа в листинге 4 включает четыре определения: одно опре-

деление функции и три определения констант. Числа 100 и 60 встре-
чаются в программе всего один раз – в определениях констант WIDTH
и HEIGHT. Вы также могли заметить, что обновленная программа ис-
пользует имя h вместо height для параметра функции picture-of-ro
cket.v4. Строго говоря, в этом изменении нет особой необходимости,
потому что DrRacket не спутает height и HEIGHT, но мы сделали это, что-
бы не сбить с толку вас.

Вычисляя выражение (animate picture-of-rocket.v4), DrRacket заме-
няет HEIGHT на 60, WIDTH на 100 и ROCKET на изображение ракеты каждый
раз, когда встречает эти имена. Чтобы испытать радость настоящих
программистов, замените число 60 в определении HEIGHT на 400 и щелк
ните на кнопке RUN (Выполнить). Вы увидите приземляющуюся ра-
кету в сцене размером 100 на 400 пикселей. Чтобы увеличить высоту
сцены, потребовалось всего одно небольшое изменение!

Листинг 4. Посадка ракеты (версия 4)
(define (picture-of-rocket.v4 h)
 (cond
 [(<= h (- HEIGHT (/ (image-height ROCKET) 2)))
 (place-image ROCKET 50 h (empty-scene WIDTH HEIGHT))]
 [(> h (- HEIGHT (/ (image-height ROCKET) 2)))
 (place-image ROCKET
 50 (- HEIGHT (/ (image-height ROCKET) 2))
 (empty-scene WIDTH HEIGHT))]))

(define WIDTH 100)
(define HEIGHT 60)

(define ROCKET)

47Пролог: как писать программы

Выражаясь современным языком, вы только что выполнили свой
первый рефакторинг программы. Каждый раз, реорганизуя свою
программу, чтобы подготовиться к возможным просьбам изменить
что-нибудь в ней, вы выполняете рефакторинг программы. Добавьте
этот пункт в свое резюме. Он смотрится неплохо, и вашему будущему
работодателю, вероятно, понравится читать такие модные словечки,
даже если это не делает вас хорошим программистом. Однако хоро-
ший программист никогда не смирится с наличием в программе трех
одинаковых выражений:

(- HEIGHT (/ (image-height ROCKET) 2))

Каждый раз, когда ваши друзья и коллеги будут читать эту програм-
му, им придется приостанавливаться, чтобы понять, что вычисляет
это выражение – расстояние между верхним краем холста и цент
ральной точкой ракеты, покоящейся на земле. Каждый раз, вычисляя
эти выражения, DrRacket должен выполнить три шага: (1) определить
высоту изображения; (2) разделить ее на 2 и (3) вычесть результат из
HEIGHT. И каждый раз будет получаться одно и то же число.

Это наблюдение требует от нас добавить еще одно определение:

(define ROCKET-CENTER-TO-TOP
 (- HEIGHT (/ (image-height ROCKET) 2)))

Теперь подставьте ROCKET-CENTER-TO-TOP вместо выражения (- HEIGHT
(/ (image-height ROCKET) 2)) в остальной части программы. Возможно,
вас волнует вопрос: где разместить это определение – выше или ниже
определения HEIGHT? Или в общем случае: имеет ли значение поря-
док следования определений? Ответ заключается в следующем: для
определений констант порядок имеет значение, а для определений
функций – нет. Встретив определение константы, DrRacket вычисля-
ет выражение в определении, а затем связывает имя константы с по-
лученным результатом. Например, следующая последовательность
определений:

(define HEIGHT (* 2 CENTER))
(define CENTER 100)

вызовет сообщение об ошибке «CENTER is used before its definition»
(константа CENTER используется до ее определения), когда DrRacket
встретит определение константы HEIGHT.

Если переупорядочить определения:

(define CENTER 100)
(define HEIGHT (* 2 CENTER))

они будут вычислены без ошибок. Здесь DrRacket сначала свяжет имя
CENTER с числом 100, а затем вычислит выражение (* 2 CENTER) и полу-
чит в результате число 200, которое благополучно свяжет с именем
HEIGHT.

48 Пролог: как писать программы

Порядок определений констант имеет значение, но со-
вершенно не важно, где поместить определения констант
относительно определений функций. Если ваша програм-
ма включает множество определений функций, их поря-
док тоже не имеет значения, хотя лучше сначала ввести все
определения констант, а затем определения функций в по-
рядке убывания важности. Начав писать свои программы
с множеством определений, вы поймете, почему этот поря-
док важен.

После устранения всех повторяющихся выражений вы по-
лучите программу, показанную в листинге 5. Она состоит из
одного определения функции и пяти определений констант.
Кроме положения центра ракеты, эти константы определя-
ют также размеры самого изображения и сцены.

Листинг 5. Посадка ракеты (версия 5)
; константы
(define WIDTH 100)
(define HEIGHT 60)
(define MTSCN (empty-scene WIDTH HEIGHT))

(define ROCKET)
(define ROCKET-CENTER-TO-TOP
 (- HEIGHT (/ (image-height ROCKET) 2)))

; функции
(define (picture-of-rocket.v5 h)
 (cond
 [(<= h ROCKET-CENTER-TO-TOP)
 (place-image ROCKET 50 h MTSCN)]
 [(> h ROCKET-CENTER-TO-TOP)
 (place-image ROCKET 50 ROCKET-CENTER-TO-TOP MTSCN)]))

Прежде чем продолжить чтение, подумайте о следующих измене-
ниях в вашей программе:

zz Как бы вы изменили программу, чтобы создать сцену размером
200×400?

zz Как бы вы изменили программу, чтобы она демонстрировала
приземление зеленого НЛО (неопознанного летающего объек-
та)? Нарисовать НЛО легко:

(overlay (circle 10 "solid" "green")
 (rectangle 40 4 "solid" "green"))

zz Как бы вы изменили программу, чтобы фон сцены окрасить
в синий цвет?

zz Как бы вы изменили программу, чтобы ракета приземлялась
на плоскую каменную площадку, которая на 10 пикселей выше
уровня земли? Не забудьте также добавить эту площадку в сцену.

Практика – лучший способ изучения. Поэтому не останавливайтесь
и просто сделайте это.

Программа также
может содержать

однострочные коммен-
тарии, начинающиеся
с точки с запятой (;).
DrRacket игнорирует
такие комментарии,
но люди, читающие

программы, не должны
этого делать, потому

что комментарии пред-
назначены для людей.
Это «канал обратной

связи» между автором
программы и всеми ее

читателями в будущем
для передачи информа-

ции о программе.

49Пролог: как писать программы

Магические числа. Взгляните еще раз на функцию picture-of-rock-
et.v5. Мы убрали из определения функции все повторяющиеся выра-
жения и все числа, кроме одного – числа 50. В мире программиро-
вания такие числа называют магическими числами, и большинство
программистов не любят их. По прошествии времени легко забыть,
какую роль играет число и можно ли его изменить. Лучше всего для
таких чисел определить отдельные константы.

В данном случае мы знаем, что 50 – это выбранная нами координа-
ты x для ракеты. Несмотря на то что число 50 не похоже на выраже-
ние, в действительности оно является повторяющимся выражением.
Таким образом, у нас есть две причины исключить 50 из определения
функции, и мы предлагаем вам сделать это самостоятельно.

Еще одно определение
Напомним, что animate фактически применяет переданные
ей функции к количеству тактов часов, прошедших с момен-
та первого вызова. То есть аргументом для picture-of-rocket
является не высота, а время. В наших предыдущих опреде-
лениях picture-of-rocket использовалось неправильное имя
для аргумента функции; вместо h (сокращенно от «height» –
высота) следует использовать t (сокращенно от «time» –
время):

(define (picture-of-rocket t)
 (cond
 [(<= t ROCKET-CENTER-TO-TOP)
 (place-image ROCKET 50 t MTSCN)]
 [(> t ROCKET-CENTER-TO-TOP)
 (place-image ROCKET
 50 ROCKET-CENTER-TO-TOP
 MTSCN)]))

Это небольшое изменение в определении сразу же проясняет, что
эта программа использует время, как если бы оно было расстоянием.
А это нехорошо.

Даже если вы пропускали уроки физики в школе, вы наверняка
знаете, что время – это не расстояние. Так что наша программа рабо-
тала по чистой случайности. Но не волнуйтесь, этот недостаток легко
исправить. Для этого нужно немного знать ракетостроение, которое
такие люди, как мы, называют физикой.

Физика?!? Возможно, вы уже забыли, чему вас учили на уроках фи-
зики. Или даже пропускали их, потому что были слишком молоды и вет
рены. Но не волнуйтесь. Такое случается даже с лучшими программи-
стами, потому что им приходится помогать людям, занимающимся
музыкой, экономикой, фотографией, медициной и многими другими
дисциплинами. Очевидно, что никакой программист не может знать
всего этого. Поэтому они или ищут необходимые знания, или разгова-

Будьте внимательны!
В этом разделе
используются некото-
рые знания из физики.
Если вас пугает физика,
пропустите этот
раздел при первом чте-
нии; программирование
не требует знаний
физики.

50 Пролог: как писать программы

ривают со специалистами. И если вы поговорите с физиком, то узнае-
те, что пройденное расстояние пропорционально времени:

d = v · t.

То есть объект, движущийся со скоростью v, за t секунд переместит-
ся на d километров (метров, пикселей и т. п.).

Конечно, учитель должен показать вам правильное определение
функции:

d(t) = v · t,

потому что оно сразу говорит, что значение d зависит от t, а v является
константой. Программисты обычно делают еще один шаг и заменяют
однобуквенные сокращения осмысленными именами:

(define V 3)

(define (distance t)
 (* V t))

Этот фрагмент программы включает два определения: функцию
distance, которая вычисляет расстояние, пройденное объектом, кото-
рый движется с постоянной скоростью, и константу V, описывающую
скорость.

Вы можете задаться вопросом: почему для скорости V здесь опре-
делено значение 3? Какой-то особой причины нет, просто мы посчи-
тали, что 3 пикселя за такт – это хорошая скорость. Вы можете не со-
гласиться с нами. Поэкспериментируйте с этим числом и посмотри-
те, что из этого получится.

Листинг 6. Посадка ракеты (версия 6)
; свойства "мира" и садящейся ракеты
(define WIDTH 100)
(define HEIGHT 60)
(define V 3)
(define X 50)

; константы, связанные с графикой
(define MTSCN (empty-scene WIDTH HEIGHT))

(define ROCKET)
(define ROCKET-CENTER-TO-TOP
 (- HEIGHT (/ (image-height ROCKET) 2)))

; функции
(define (picture-of-rocket.v6 t)
 (cond
 [(<= (distance t) ROCKET-CENTER-TO-TOP)
 (place-image ROCKET X (distance t) MTSCN)]
 [(> (distance t) ROCKET-CENTER-TO-TOP)
 (place-image ROCKET X ROCKET-CENTER-TO-TOP MTSCN)]))

(define (distance t)
 (* V t))

51Пролог: как писать программы

Теперь можно еще раз исправить picture-of-rocket. Вместо срав-
нения t с высотой функция будет использовать выражение (distance
t), вычисляющее высоту местоположения ракеты. Окончательная
программа показана в листинге 6. Она включает определения двух
функций: picture-of-rocket.v6 и distance. Остальные определения
констант делают определения функций легко читаемыми и изме-
няемыми. Как обычно, эту программу можно запустить с помощью
animate:

> (animate picture-of-rocket.v6)

По сравнению с предыдущими версиями, эта версия picture-of-rock-
et показывает, что программа может состоять из нескольких опреде-
лений функций, ссылающихся друг на друга. Кроме того, даже в пер-
вой версии использовались функции + и / – просто вы думали, что они
встроены в BSL.

Когда вы станете настоящим программистом, то обнаружите, что
программы состоят из множества определений функций и множест
ва определений констант. Вы также увидите, что функции все время
ссылаются друг на друга. И ваша задача – организовать их так, чтобы
вы могли легко читать эти определения даже спустя несколько меся-
цев после завершения работы над ними. В конце концов, вы или кто-
то другой может пожелать внести изменения в эти программы, и если
вы не сможете понять организацию программы, вам будет сложно
выполнить даже самую простую задачу.

Теперь вы – программист
Это утверждение может стать для вас неожиданностью, но это прав-
да. Теперь вы знаете всю механику языка BSL. Вы знаете, что в про-
граммировании используется арифметика чисел, строк, изображений
и любых других данных, поддерживаемых вашими языками про-
граммирования. Вы знаете, что программы состоят из определений
функций и констант. Вы знаете, как мы говорили выше, что все дело
в правильной организации этих определений. И последнее, но не ме-
нее важное: вы знаете, что DrRacket и учебные пакеты поддерживают
множество других функций, а документация в HelpDesk описывает
эти функции.

Вы можете подумать, что еще недостаточно знаете, чтобы писать
программы, реагирующие на нажатия клавиш, щелчки мыши и т. д.
И это правда. Кроме animate, библиотека 2htdp/universe содержит
множество других функций, которые подключают ваши программы
к клавиатуре, мыши, часам и другим механизмам в вашем компью-
тере. Более того, с ее помощью можно даже писать программы, спо-
собные связать ваш компьютер с любым другим компьютером, где бы
тот не находился. Так что это не проблема.

52 Пролог: как писать программы

Проще говоря, вы познакомились почти со всеми механизмами со-
ставления программ. Если вдобавок к этому вы познакомитесь со все-
ми доступными функциями, то сможете писать программы, играть
в интересные компьютерные игры, запускать анимацию или отсле-
живать бизнес-аккаунты. Вопрос в том, действительно ли это означа-
ет, что вы программист. Как вы думаете?

Не спешите перевернуть страницу. Подумайте!

I � ДАННЫЕ
ФИКСИРОВАННОГО
РАЗМЕРА

Всякий язык программирования включает язык данных и язык опе-
раций с данными. Первый всегда определяет некоторые формы ато-
марных данных для представления разнообразной информации,
и программист должен уметь составлять элементарные данные для
описания более сложных композиций. Второй язык определяет не-
которые базовые операции с атомарными данными, и задача про-
граммиста состоит в том, чтобы научиться объединять эти операции
в программы, выполняющие желаемые вычисления. Для описания
комбинации этих двух частей языка программирования мы исполь-
зуем слово арифметика, потому что оно обобщает то, что вы узнали
во время учебы в школе.

Эта первая часть книги знакомит с арифметикой языка програм-
мирования BSL, с которым мы познакомились в прологе. От ариф-
метики рукой подать до ваших первых простых программ, которые
в математике называют функциями. Но прежде чем вы это осознаете,
процесс написания программ будет казаться вам запутанным, и вы
будете искать способ упорядочить свои мысли. Мы приравниваем
«организацию мыслей» к проектированию, и эта первая часть книги
знакомит вас с систематическим подходом к проектированию про-
грамм.

1. Арифметика

В прологе вы узнали, как записать выражение, зна-
комое вам с первого класса, следуя правилам язы-
ка BSL:

zz ввести «(»,
zz ввести имя операции op,

zz ввести аргументы, разделяя их пробелами, и
zz ввести «)».

Просто ради напоминания, вот простое выражение:

(+ 1 2)

Здесь используется операция + сложения, за которой следуют два
аргумента – обычные числа. А вот другой пример:

(+ 1 (+ 1 (+ 1 1) 2) 3 4 5)

Отметим два важных момента в этом втором примере. Во-первых,
операции могут принимать больше двух аргументов. Во-вторых, ар-
гументы необязательно должны быть числами; они могут быть выра-
жениями.

Вычисляются выражения просто. Сначала BSL вычисляет все аргу-
менты операции, а затем передает полученные значения операции,
которая возвращает результат. Таким образом:

(+ 1 2)
==
3

и

(+ 1 (+ 1 (+ 1 1) 2) 3 (+ 2 2) 5)
==
(+ 1 (+ 1 2 2) 3 4 5)
==
(+ 1 5 3 4 5)
==
18

Эти вычисления должны быть вам знакомы, потому что подобные
вычисления вы производили на уроках математики. Кто-то мог бы
записать порядок вычислений иначе, если его не учили выстраивать
вычисления в правильной последовательности. Как бы то ни было,
BSL выполняет вычисления точно так же, как и вы, и этот факт должен
принести вам облегчение. Он гарантирует, что вы понимаете работу
элементарных операций с элементарными данными, поэтому есть
некоторая надежда, что вы сможете предсказать результаты, вычис-
ляемые вашими программами. Вообще говоря, для программиста

Быстро пролистай-
те эту первую главу

и переходите ко второй.
А когда встретите

незнакомую вам
«арифметику»,

возвращайтесь сюда.

Мы используем ==,
чтобы сказать: «равно,

согласно законам
вычислений».

57Арифметика

важно знать, как выполняет вычисления выбранный им язык, потому
что иначе поведение программы может нанести ущерб людям, кото-
рые их используют.

В оставшейся части этой главы представлены четыре фор-
мы атомарных данных в языке BSL: числа, строки, изобра-
жения и логические значения. Мы используем слово «ато-
марный», следуя за аналогией с физикой. Вы не сможете
заглянуть внутрь атомарных фрагментов данных, но у вас
есть функции, позволяющие объединить несколько фрагментов ато-
марных данных, извлечь их «свойства», так же в терминах атомар-
ных данных, и т. д. В следующих разделах представлены некоторые
из этих функций, еще называемых примитивными, или предопреде-
ленными, операциями. Полный перечень функций, доступных в языке
BSL, вы найдете в документации, поставляемой с DrRacket.

1.1. Арифметика чисел
Услышав слово «арифметика», многие начинают думать о «числах»
и «операциях с числами». К «операциям с числами» можно отнести:
сложение двух чисел для получения третьего, вычитание одного чис-
ла из другого, определение наибольшего общего делителя двух чисел
и многие другие. Если не воспринимать слово «арифметика» слиш-
ком буквально, то в этот список можно также включить вычисление
синуса угла, округление действительного числа до ближайшего цело-
го и т. д.

Язык BSL поддерживает числа и арифметику с ними. Как обсужда-
лось в прологе, арифметические операции, такие как +, используются
следующим образом:

(+ 3 4)

то есть в форме префиксной записи. Вот некоторые из операций с чис-
лами, которые поддерживает наш язык: +, -, *, /, abs, add1, ceiling, de-
nominator, exact->inexact, expt, floor, gcd, log, max, numerator, quotient, random,
remainder, sqr и tan. Мы прошлись по всему алфавиту, чтобы показать
разнообразие операций. Загляните в документацию, чтобы узнать,
что они вычисляют и заодно – сколько вообще подобных операций
поддерживается.

Если вам понадобится операция с числами, знакомая вам по уро-
кам математики, то, скорее всего, BSL поддерживает ее. Угадайте ее
название и поэкспериментируйте в области взаимодействий. Пред-
ставим, что вам нужно вычислить синус некоторого угла. Вы могли бы
попробовать сделать это:

> (sin 0)
0

В следующем томе
«How to Design Compo-
nents» мы расскажем,
как проектировать
атомарные данные.

58 Глава 1

а потом долго и счастливо пользоваться своим открытием.
Но можно заглянуть в HelpDesk. Там вы обнаружите, что
кроме операций язык BSL также распознает имена некото-
рых широко используемых чисел, например pi и е.

Что еще можно сказать о числах? Программы на BSL мо-
гут использовать натуральные, целые, рациональные, дей-

ствительные и комплексные числа. Мы уверены, что вы слышали обо
всех этих видах чисел, кроме последнего. Комплексные числа могли
упоминаться на уроках математики в старших классах средней шко-
лы. Если нет, то не волнуйтесь; несмотря на несомненную пользу
комплексных чисел, новичкам необязательно знать о них.

По-настоящему важное различие касается точности чисел. На дан-
ный момент важно понимать, что BSL различает точные и неточные
числа. Когда в вычислениях участвуют точные числа, BSL старается со-
хранить точность. Например, (/ 4 6) дает точную дробь 2/3, которую
DrRacket может отобразить в виде правильной, неправильной или
десятичной дроби. Поэкспериментируйте с компьютерной мышкой
и найдите пункт в меню, который заменяет дробь десятичной дробью.

Некоторые числовые операции BSL не могут дать точного результа-
та. Например, операция sqrt над числом 2 дает иррациональное число,
которое нельзя описать конечным числом цифр. Поскольку компью-
теры имеют ограничения в представлении данных, язык BSL вынуж-
ден учитывать эти ограничения и поэтому выводит приближенный
результат операции: 1.4142135623730951. Как упоминалось в прологе,
об этой неточности начинающих программистов предупреждает пре-
фикс #i. Однако большинство языков программирования предпочита-
ют жертвовать точностью молча, лишь немногие сообщают о ней в до-
кументации и еще меньше предупреждают об этом программистов.

ПРИМЕЧАНИЕ О ЧИСЛАХ. Слово «число» относится к большому раз-
нообразию чисел, включая натуральные, целые, рациональные, дей-
ствительные и даже комплексные числа. В большинстве случаев сло-
во «число» можно приравнять к «числовой прямой», известной вам
из начальной школы, хотя иногда такое сравнение не особенно точ-
ное. Для большей точности в выражении своих мыслей мы использу-
ем подходящие слова: целое, действительное и т. д. Мы можем даже
уточнять эти понятия, используя такие стандартные термины, как
положительное целое, неотрицательное число, отрицательное число
и т. д. КОНЕЦ.

Упражнение 1. Добавьте следующие определения для x и y в обла-
сти определений в DrRacket:

(define x 3)
(define y 4)

Теперь представьте, что x и y – это координаты точки. Напишите
выражение, которое вычисляет расстояние от этой точки до начала
координат, то есть до точки с координатами (0,0).

Возможно, вы знакомы
с числом е. Это

действительное число,
примерно 2,718, которое

называется
«постоянной Эйлера».

59Арифметика

Правильный результат для этих значений – число 5, но ваше выра-
жение должно давать правильный результат даже после изменения
определений x и y.

На всякий случай, если вы не изучали геометрию или забыли фор-
мулу, напомним, что расстояние от точки (x,y) до начала координат
вычисляется как:

В конце концов, мы учим вас проектировать программы, а не гото-
вим из вас геометров.

Лучший способ прийти к желаемому выражению – щелкнуть на
кнопке RUN (Выполнить) и поэкспериментировать в области взаимо-
действий. После щелчка на кнопке RUN (Выполнить) DrRacket опре-
делит текущие значения x и y, и вы сможете использовать их в своих
экспериментах с выражениями:

> x
3
> y
4
> (+ x 10)
13
> (* x y)
12

Получив выражение, которое дает правильный результат, скопи-
руйте его из области взаимодействий в область определений.

Чтобы убедиться, что выражение работает правильно, замените
число 5 на 12 в определении x и число 4 на число 5 в определении y,
а затем щелкните на кнопке RUN (Выполнить). В результате должно
получиться число 13.

Ваш учитель математики сказал бы, что вы вычислили значение
по формуле расстояния. Чтобы использовать формулу с другими
входными значениями, нужно открыть DrRacket, отредактировать
определения x и y, подставив желаемые координаты, и щелкнуть на
кнопке RUN (Выполнить). Но такой способ повторного использова-
ния формулы расстояния слишком громоздкий и неудобный. Вскоре
мы покажем вам, как определять функции, которые упрощают по-
вторное использование формул. А здесь мы просто использовали это
упражнение, чтобы привлечь внимание к идее функций и подгото-
вить вас к программированию с их помощью. 

1.2. Арифметика строк
Существует распространенное предубеждение относительно внут
реннего устройства компьютеров: многие считают, что все дело в би-
тах и байтах – какими бы они ни были – и, возможно, в числах, пото-

60 Глава 1

му что все знают, что компьютеры предназначены для вычислений.
С одной стороны, это верно, и инженеры-электронщики должны ис-
пользовать именно такое представление, но начинающие програм-
мисты и все остальные никогда не должны делать этого.

Языки программирования предназначены для выполнения вы-
числений с информацией, а информация может иметь любую форму.
Например, программа может работать с цветами, именами, деловы-
ми письмами или бытовой перепиской между людьми. Даже если бы
мы могли кодировать такую информацию как числа, то это было бы
совершенно неправильно. Только представьте, что вам придется за-
помнить огромные таблицы с числовыми обозначениями, например
0 означает «красный», а 1 означает «привет» и т. д.

Вместо этого большинство языков программирования поддержи-
вают, по крайней мере, один вид данных для представления такой
символьной информации. На данный момент мы используем строки
BSL. Вообще говоря, строка (String) – это последовательность симво-
лов, которые можно вводить с клавиатуры, плюс некоторые другие,
которые мы пока не будем трогать, заключенная в двойные кавычки.
В прологе мы видели несколько строк на языке BSL: "hello", "world",
"blue", "red" и др. Первые две – это слова, которые могут употреблять-
ся в разговоре или в письме; остальные – названия цветов, которые
мы, возможно, захотим использовать.

ПРИМЕЧАНИЕ. Мы используем термин 1String (односимвольная
строка) для обозначения символов, вводимых с клавиатуры и состав-
ляющих строку. Например, "red" состоит из трех таких 1String: "r", "e",
"d". В действительности 1String – это нечто большее, но сейчас будем
представлять данные этого типа как строки, состоящие из одного
символа. КОНЕЦ.

В языке BSL есть только одна операция, принимающая и возвра-
щающая исключительно строки: string-append, которая, как мы виде-
ли в прологе, объединяет две строки в одну. Операцию string-append
можно считать операцией сложения строк, похожей на +, только, в от-
личие от последней, принимающей два (или более) числа и возвра-
щающей новое число, первая принимает две или более строк и воз-
вращает новую строку:

> (string-append "what a " "lovely " "day" " 4 BSL")
"what a lovely day 4 BSL"

Исходные числа не меняются, когда складываются операцией
+, и исходные строки не меняются, когда объединяются операци-
ей string-append. Если вам понадобится вычислять такие выражения
в уме, то просто помните, что при сложении строк используются оче-
видные законы, аналогичные законам для +:

(+ 1 1) == 2 (string-append "a" "b") == "ab"
(+ 1 2) == 3 (string-append "ab" "c") == "abc"
(+ 2 2) == 4 (string-append "a" " ") == "a "
... ...

61Арифметика

Упражнение 2. Добавьте следующие две строки в область опреде-
лений:

(define prefix "hello")
(define suffix "world")

Затем используйте элементарные операции со строками, чтобы
создать выражение, которое объединяет prefix и suffix и вставляет "_"
между ними. Получившаяся в результате программа должна после за-
пуска выводить "hello_world" в области взаимодействий.

См. упражнение 1, где показано, как создавать выражения в DrRa
cket. 

1.3. А теперь все смешаем
Все остальные операции со строками (в языке BSL) принимают или воз-
вращают данные, не являющиеся строками. Вот несколько примеров:

zz string-length принимает строку и возвращает число;
zz string-ith принимает строку s и число i и возвращает 1String

(символ), находящийся в i-й позиции в строке s (счет начина-
ется с 0);

zz number->string принимает число и возвращает строку.

Также обратите внимание на substring и узнайте, что она делает.
Если документация в HelpDesk покажется вам путаной, поэкспери-

ментируйте с функциями в области взаимодействий. Передайте им
подходящие аргументы и выясните, что они вычисляют. Также по-
пробуйте передать неподходящие аргументы, чтобы узнать, как на
это реагирует BSL:

> (string-length 42)
string-length:expects a string, given 42

(string-length: ожидалась строка, а получено число 42).
Как видите, в таких случаях BSL сообщает об ошибке. В первой час

ти сообщения («string-length») указывается название операции, в ко-
торой обнаружилась ошибка, а во второй половине описывается сама
ошибка. В данном конкретном примере BSL сообщает, что string-
length должна применяться к строке, а мы передали ей число 42.

Операции можно вкладывать друг в друга, если следить за тем,
чтобы передавались подходящие данные. Вернемся к выражению
из пролога:

(+ (string-length "hello world") 20)

Внутреннее выражение применяет string-length к "hello world" – на-
шей любимой строке. Внешнее выражение + получает результат вло-
женного выражения и число 20.

62 Глава 1

Давайте пройдем это выражение по шагам и определим его ре
зультат:

(+ (string-length "hello world") 20)
==
(+ 11 20)
==
31

Как видите, вычисления с такими вложенными выражениями, об-
рабатывающими данные разных типов, ничем не отличаются от вы-
числений с числовыми выражениями. Вот еще один пример:

(+ (string-length (number->string 42)) 2)
==
(+ (string-length "42") 2)
==
(+ 2 2)
==
4

Прежде чем продолжить, попробуйте создать несколько вложен-
ных выражений, которые неправильно смешивают данные, напри-
мер:

(+ (string-length 42) 1)

Запустите их в DrRacket. Прочитайте сообщение об ошибке, а также
обратите внимание, какие области подсвечиваются в области опреде-
лений.

Упражнение 3. Добавьте следующие две строчки кода в область
определений:

(define str "helloworld")
(define i 5)

Затем, используя операции со строками, создайте выражение, ко-
торое добавляет символ "_" в строку str в позицию i. В результате
должна получиться строка длиннее исходной; ожидаемый результат:
"hello_world".

Под термином позиция подразумевается символ, находящийся на
i-м месте слева от начала, но программисты начинают счет с 0, по
этому 5-я буква в этом примере – "w", потому что 0-я буква – "h". Под-
сказка. Столкнувшись с подобной «проблемой отсчета», выпишите
символы строки и подпишите ниже их номера, начав с 0, это облегчит
подсчет:

(define str "helloworld")
(define ind "0123456789")
(define i 5)

См. упражнение 1, где показано, как создавать выражения в DrRa
cket. 

63Арифметика

Упражнение 4. Используйте те определения, что и в упражне-
нии 3, и создайте выражение, удаляющее из str символ в i-й позиции.
Очевидно, что это выражение создаст строку короче исходной. Какие
значения i допустимы? 

1.4. Арифметика изображений
Изображение – это прямоугольный фрагмент визуальных
данных, например фотография или геометрическая фигура
и ее рамка. Изображения можно вставлять в DrRacket везде,
где можно вставлять выражения, потому что изображения
являются значениями, такими же как числа и строки.

Ваши программы могут манипулировать изображениями с по
мощью элементарных операций трех видов. Операции первого вида
создают элементарные изображения:

zz circle создает изображение круга из радиуса, строку, определя-
ющую необходимость заливки, и строку с названием цвета;

zz ellipse создает эллипс и принимает два диаметра, строку,
определяющую необходимость заливки, и строку с названием
цвета;

zz line создает отрезок по двум точкам и строке с названием
цвета;

zz rectangle создает прямоугольник и принимает ширину, высоту,
строку режима и строку с названием цвета;

zz text создает текстовое изображение и принимает строку с тек-
стом, размер шрифта и строку с названием цвета;

zz triangle создает равносторонний треугольник, направленный
вверх, и принимает размер, строку режима и строку с названи-
ем цвета.

Названия этих операций однозначно определяют создаваемое
изображение. Вам только нужно запомнить строки режима "solid" (со
сплошной заливкой цветом) и "outline" (только контур) и строки цве-
тов, такие как "orange" (оранжевый), "black" (черный) и т. д.

Поэкспериментируйте с этими операциями в окне взаимодей-
ствий:

> (circle 10 "solid" "green")

> (rectangle 10 20 "solid" "blue")

> (star 12 "solid" "gray")

А теперь взгляните еще раз на примеры выше! В последнем приме-
ре используется не упомянутая выше операция. Загляните в докумен-

Открыв новую вкладку,
не забудьте подключить
библиотеку 2htdp/image.

64 Глава 1

тацию (https://docs.racket-lang.org/teachpack/2htdpimage.html) и узнай
те, сколько еще таких операций имеется в библиотеке 2htdp/image.
Поэкспериментируйте с этими операциями.

Операции второго вида возвращают свойства изображений:

zz image-width определяет ширину изображения в пикселях;
zz image-height определяет высоту изображения.

Они извлекают эти значения непосредственно из изображений,
например:

> (image-width (circle 10 "solid" "red"))
20
> (image-height (rectangle 10 20 "solid" "blue"))
20

А теперь остановитесь и объясните, что вернет DrRacket, если ввес
ти следующее выражение:

(+ (image-width (circle 10 "solid" "red"))
 (image-height (rectangle 10 20 "solid" "blue")))

Для правильного понимания третьего вида операций с изображе-
ниями необходимо познакомиться с одной новой идеей: точкой при-
вязки. Изображение – это не единственный пиксель, оно состоит из
множества пикселей. Каждое изображение чем-то похоже на фото-
графию, то есть на прямоугольник, заполненный пикселями. Один из
этих пикселей считается точкой привязки. При использовании опе-
раций, объединяющих два изображения, объединение осуществля-
ется относительно точек привязки, если явно не указать какую-либо
другую точку:

zz overlay накладывает все изображения, перечисленные в опера-
ции, друг на друга, используя центр в качестве точки привязки;

zz overlay/xy подобна операции overlay, но принимает два числа –
x и y – между двумя аргументами с изображениями. Она сдви-
гает второе изображение на x пикселей вправо и на y пикселей
вниз относительно верхнего левого угла первого изображения;
отрицательное значение x вызывает сдвиг второго изображе-
ния влево, а отрицательное значение y – вверх;

zz overlay/align подобна операции overlay, но принимает две стро-
ки, которые смещают точки привязки указанных изображений.
Всего существует девять разных позиций; поэкспериментируй-
те с ними!

Библиотека 2htdp/image содержит множество других элементарных
функций для объединения изображений. Когда захотите познако-
миться с ними поближе, вам придется прочитать документацию с их
описанием. А пока мы представим еще три операции, которые могут
пригодиться для создания анимированных сцен и изображений для
игр:

https://docs.racket-lang.org/teachpack/2htdpimage.html

65Арифметика

zz empty-scene создает прямоугольник заданной ширины и высоты;
zz place-image помещает изображение в сцену в указанное место.

Если изображение не помещается в сцену, оно будет соответ-
ствующим образом обрезано;

zz scene+line принимает сцену, четыре числа и цвет и рисует ли-
нию на указанном изображении. Поэкспериментируйте само-
стоятельно, чтобы увидеть, как работает эта операция.

Законы арифметики изображений аналогичны законам арифмети-
ки чисел; см. табл. 1, где приводится несколько примеров и сравнение
с арифметикой чисел. Повторю еще раз, что ни одна операция не из-
меняет и не уничтожает исходное изображение. Так же как +, эти опе-
рации просто создают новые изображения, которые определенным
образом объединяют исходные данные.

Таблица 1. Правила создания изображений

Арифметика чисел Арифметика изображений
(+ 1 1) == 2 (overlay (square 4 "solid" "orange")

 (circle 6 "solid" "yellow"))
==

(+ 1 2) == 3 (underlay (circle 6 "solid" "yellow")
 (square 4 "solid" "orange"))
==

(+ 2 2) == 4 (place-image (circle 6 "solid" "yellow")
 10 10
 (empty-scene 20 20))
==

... ...

Упражнение 5. Воспользуйтесь библиотекой 2htdp/image и создай-
те изображение простой лодки или дерева. Предусмотрите простую
возможность изменения размеров изображения. 

Упражнение 6. Добавьте следующую строку в область
определений:

(define cat)

Создайте выражение, подсчитывающее пиксели в изображении. 

Скопируйте и вставьте
изображение в DrRacket.

66 Глава 1

1.5. Арифметика логических значений
Прежде чем мы сможем проектировать программы, нам нужно по-
знакомиться с последним видом элементарных данных: логическими
(boolean) значениями. Существует только два вида логических значе-
ний: #true и #false. Программы используют логические значения для
представления решений или состояния переключателей.

Вычисления с логическими значениями тоже очень просты. В част-
ности, программы на BSL используют в основном три операции: or,
and и not. Эти операции похожи на сложение, умножение и измене-
ние знака чисел. Конечно, поскольку существует всего два логических
значения, мы имеем возможность продемонстрировать работу этих
функций во всех возможных ситуациях:

zz or проверяет, есть ли #true среди заданных логических значе-
ний:

> (or #true #true)
#true
> (or #true #false)
#true
> (or #false #true)
#true
> (or #false #false)
#false

zz and проверяет, равны ли все указанные логические значения
значению #true:

> (and #true #true)
#true
> (and #true #false)
#false
> (and #false #true)
#false
> (and #false #false)
#false

zz not всегда выбирает другое логическое значение, отличающееся
от заданного:

> (not #true)
#false

Неудивительно, что операции or и and могут принимать больше
двух выражений. Наконец, операции or и and имеют еще ряд отличи-
тельных особенностей, но для их объяснения необходимо вернуться

к вложенным выражениям.
Упражнение 7. Логические выражения могут выражать

некоторые повседневные проблемы. Предположим, вам нуж-
но решить, подходит ли сегодняшний день для посещения

Формулировку этого
упражнения предложил

Надим Хамид
(Nadeem Hamid).

67Арифметика

торгового центра. Вы ходите в торговый центр либо когда пасмурно,
либо по пятницам (потому что именно по пятницам в магазинах про-
водятся распродажи).

Теперь попробуйте принять решение, используя новые знания
о логических значениях. Сначала добавьте эти две строки в область
определений DrRacket:

(define sunny #true)
(define friday #false)

Теперь создайте выражение, которое проверит, что sunny имеет
значение #false или friday имеет значение #true. В данном случае ре-
зультат должен получиться равным #false. (Почему?)

См. упражнение 1, где показано, как создавать выражения в DrRa
cket. Сколько всего разных комбинаций из значений sunny и friday мо-
жет быть? 

1.6. Смешанные операции с логическими
значениями
Одно из важных применений логических значений – помощь в вы-
числениях с другими видами данных. В прологе уже говорилось, что
в программах на BSL можно давать значениям имена с помощью
определений. Например, программа может начинаться с определения

(define x 2)

и затем вычислять обратную величину:

(define inverse-of-x (/ 1 x))

И все будет хорошо, пока мы не отредактируем программу и не из-
меним значение x на 0.

В таких ситуациях нам могут помочь логические значения, в част-
ности условные вычисления. Сначала с помощью элементарной
функции = можно проверить равенство двух (или более) чисел. Если
они равны, то операция = вернет #true, иначе – #false. Затем исполь-
зовать разновидность выражения на BSL, о которой мы пока не упо-
минали: выражение if. В нем используется слово «if», как если бы это
была элементарная функция, но это не так. За словом «if» следуют три
выражения, разделенных пробельными символами (включая табуля-
цию, разрывы строк и т. д.). Естественно, все выражение заключено
в круглые скобки, например:

(if (= x 0) 0 (/ 1 x))

Это выражение if содержит три подвыражения: (= x 0), 0 и (/ 1 x).
Вычисление этого выражения происходит в два этапа:

68 Глава 1

1.	� Первое подвыражение вычисляется всегда. Его результат дол-
жен быть логическим значением.

2.	� Если первое подвыражение возвращает #true, то вычисляется
второе подвыражение; в противном случае – третье. Результат

второго этапа вычислений становится результатом всего
выражения if.

Введите определение x, показанное выше, и поэкспери-
ментируйте с выражением if в области взаимодействий:

> (if (= x 0) 0 (/ 1 x))
0.5

Опираясь на законы арифметики, вы можете сами предугадать ре-
зультат:

(if (= x 0) 0 (/ 1 x))
== ; поскольку x имеет значение 2
(if (= 2 0) 0 (/ 1 2))
== ; 2 не равно 0, подвыражение (= 2 0) даст #false
(if #false 0 (/ 1 x))
(/ 1 2)
== ; после нормализации в десятичное представление получается
0.5

Другими словами, DrRacket знает, что x обозначает 2, а оно не равно
0. Поэтому (= x 0) вернет #false, и функция if выберет третье подвыра-
жение для этапа вычислений.

А сейчас представьте, что вы исправили определение x так, что те-
перь оно выглядит следующим образом:

(define x 0)

Какое значение теперь вернет наше условное выражение?

(if (= x 0) 0 (/ 1 x))

Почему? Напишите на листке бумаги последовательность вычисле-
ний, как она видится вам.

Кроме =, в BSL имеется множество других элементарных операций
сравнения. Объясните, что делают следующие четыре операции срав-
нения в отношении чисел: <, <=, >, >=.

Строки нельзя сравнивать с помощью = и родственных ей опера-
ций. Вместо этого надо использовать string=?, string<=? или string>=?.
Совершенно очевидно, что string=? проверяет равенство двух задан-
ных строк, но две другие операции требуют пояснений. Загляните
в документацию с их описанием. Или экспериментальным путем
определите общие закономерности, а затем проверьте свои выводы,
заглянув в документацию.

У кого-то может возникнуть вопрос: зачем вообще сравнивать стро-
ки друг с другом? Представьте программу, которая управляет светофо-

Щелкнув правой кнопкой
мыши на результате,
вы сможете выбрать

другую форму его
представления.

69Арифметика

рами. Она может использовать строки "green", "yellow" и "red" для обо-
значения цветов. Программа может содержать такой фрагмент:

(define current-color ...)

(define next-color
 (if (string=? "green" current-color) "yellow" ...))

Легко представить, что этот фрагмент связан с вычислениями, ко-
торые определяют, какую лампочку нужно включить, а какую выклю-
чить.

В следующих нескольких главах мы рассмотрим более эффектив-
ные способы выражения условных вычислений, чем if, и, что особен-
но важно, системные способы их проектирования.

Упражнение 8. Добавьте следующую строку в область опреде
лений:

(define cat)

Создайте условное выражение, которое определяет, какая сторо-
на изображения больше – ширина или высота. Изображение долж-
но быть помечено как "tall" (высокое), если его высота больше или
равна ширине; иначе метка должна быть строкой "wide" (широкое).
См. упражнение 1, где показано, как создавать выражения в DrRacket.
В ходе экспериментов замените изображение кота прямоугольником
по вашему выбору и убедитесь, что ваше выражение возвращает пра-
вильный ответ.

После этого попробуйте изменить выражение так, чтобы оно опре-
деляло, является ли изображение "tall" (высоким), "wide" (широким)
или "square" (квадратным). 

1.7. Предикаты: знай свои данные
Вспомните выражение (string-length 42) и его результат. На самом
деле это выражение не дает результата, оно сообщает об ошибке.
DrRacket выводит сообщения об ошибках красным цветом в обла-
сти взаимодействий и выделяет ошибочные выражения (в области
определений). Этот способ выделения ошибок особенно полезен,
когда ошибочное выражение глубоко вложено в какое-то другое вы-
ражение:

(* (+ (string-length 42) 1) pi)

Точки в определении
current-color, конечно
же, не являются частью
программы. Замените
их строкой с названием
цвета.

70 Глава 1

Поэкспериментируйте с этим выражением, введя его в область взаи
модействий и в область определений (а затем щелкните на кнопке
RUN (Выполнить)).

Конечно, никому не хочется, чтобы в его программе были подоб-
ные выражения, сигнализирующие об ошибках. И обычно мало кто
допускает такие очевидные ошибки, как использование числа 42
вместо строки. Однако довольно часто программы имеют дело с пе-
ременными, которые могут хранить число или строку:

(define in ...)
(string-length in)

Переменная, такая как in, может играть роль заменителя любо-
го значения, включая число, и использоваться в выражении string-
length.

Один из способов предотвратить подобные случайности – исполь-
зовать предикат, то есть функцию, которая принимает значение
и определяет, принадлежит ли оно какому-либо классу данных. На-
пример, предикат number? определяет, является ли данное значение
числом:

> (number? 4)
#true
> (number? pi)
#true
> (number? #true)
#false
> (number? "fortytwo")
#false

Как видите, предикаты возвращают логические значения. Поэто-
му, комбинируя предикаты с условными выражениями, можно пре-
дотвратить неправильное использование выражений:

(define in ...)
(if (string? in) (string-length in) ...)

Для всех классов данных, с которыми мы по-
знакомились в этой главе, имеются соответству-
ющие предикаты. Поэкспериментируйте с number?,
string?, image? и boolean?, чтобы понять, как они ра-
ботают.

В дополнение к предикатам, которые различают
разные формы данных, языки программирования
также имеют предикаты, различающие разные
типы чисел. В BSL числа классифицируются по
строению и по точности. Под строением понима-
ются знакомые всем числа: целые, рациональные,
действительные и комплексные, но многие языки
программирования, включая BSL, также исполь-
зуют конечные приближения хорошо известных

Введите выражение (sqrt -1)
в области взаимодействий и нажми-
те клавишу Enter. Посмотрите, что

получилось в результате. Вы должны
увидеть так называемое комплексное

число, с которым рано или поздно
сталкивается каждый. Ваш учитель
математики мог говорить вам, что

нельзя вычислить квадратный корень
из отрицательного числа, но правда

в том, что математики и некоторые
программисты уверены в обратном.
Не волнуйтесь: понимание особенно-
стей комплексных чисел не является

обязательным требованием для
проектировщиков программ.

71Арифметика

констант, что приводит к несколько неожиданным результатам с пре-
дикатом rational?:

> (rational? pi)
#true

Что касается точности, то мы уже упоминали это понятие. А теперь
поэкспериментируйте с предикатами exact? и inexact?, чтобы убе-
диться, что они выполняют проверки, о которых говорят их имена
(точное число и неточное число соответственно). Позже мы обсудим
природу чисел более подробно.

Упражнение 9. Добавьте следующую строку в область определе-
ний в DrRacket:

(define in ...)

Затем создайте выражение, преобразующее значение in в положи-
тельное число. Для строки в переменной in выражение должно вы-
числять длину строки; для изображения – площадь; для числа оно
должно уменьшать это число на 1, если оно не равно 0 или неотри-
цательное; для #true должно возвращаться значение 10, а для #false –
значение 20. Подсказка: прочитайте (еще раз) описание условного вы-
ражения cond в разделе «Пролог: как писать программы».

См. упражнение 1, где показано, как создавать выражения в DrRa
cket. 

Упражнение 10. Теперь отдохните, поешьте, поспите и переходи-
те к следующей главе. 

	865701
	Blank Page

