Codephanne

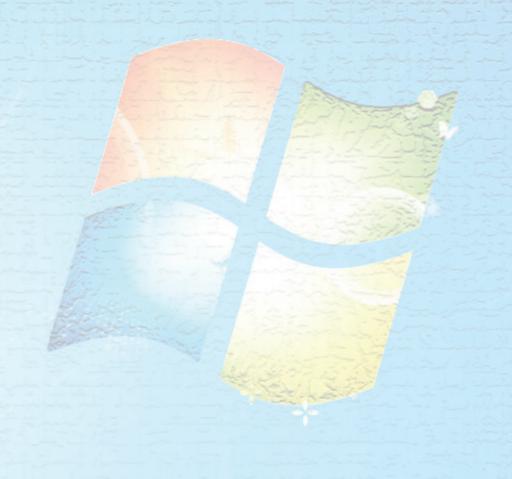
Предисловие	9
Раздел 1. Задания 1	. 10
1.1. Общие вопросы	
1.2. Примеры зад <mark>аний и методика их вып</mark> олнения	
1.2.1. Пример 1 [3]	
1.2.2. Приме <mark>р 2</mark>	
1.3. Задания для самостоятельной работы	
Раздел 2. Задания 2	. 16
2.1. Общие вопросы	
2.2. Примеры заданий и методика их выполнения	
2.2.1. Пример 1 [3]	
2.2.2. Пример 2	
2.2.3. Пример 3	
2.2.4. Пример 4	
2.2.5. Пример 5	
2.2.6. Пример 6	
2.3. Рекомендации по выполнению задания	. 24
2.4. Задания для самостоятельной работы	. 25
Раздел 3. Задания 3	. 30
3.1. Общие вопросы	31
3.2. Примеры заданий и методика их выполнения	
3.2.1. Пример 1 [3]	
3.2.2. Пример 2	
3.2.3. Пример 3	
3.2.4. Пример 4	
3.2.5. Пример 5	
3.2.6. Пример 6	
3.2.7. Пример 7	
3.2.8. Пример 8	. 36

7 0 0 Посто 0	7.
3.2.9. Пример 9	
3.3. Задания для самостоятельной работы	38
Раздел 4. Задания 4	40
4.1. Общие вопросы	
4.2. Задания типа 1 и методика их выполнения	
4.3. Метод анализа с конца	
4.4. Задания типа 2 и методика их выполнения	
4.5. Задания для самостоятельной работы	52
Descar F. Zanavira F	г.
Раздел 5. Задания 5	
5.1. Общие вопросы	
5.2. Примеры заданий и их методика их выполнения	
5.2.1. Пример 1	
5.2.2. Пример 2	59
5.2.3. Пример 3	60
5.2.4. Пример 4	61
5.2.5. Пример 5	61
5.3. Рекомендации по выполнению задания 5	62
5.4. Задания для самостоятельной работы	63
5.5. Задания 5 в другой формулировке	66
Раздел 6. Задания 6	69
6.1. Общие вопросы	70
6.2. Примеры заданий и методика их выполнения	
6.2.1. Пример 1	
6.2.2. Пример 2	
6.2.3. Пример 3	
6.3. Задания 6 другой формулировки	
6.4. Примеры заданий 6 другой формулировки и методика	
их выполнения	75
6.4.1. Пример 1	
6.4.2. Пример 2	
6.4.3. Пример 3	
6.4.4. Пример 4	
6.4.5. Пример 5	
υ. 1.υ. 11μ//11/10μ υ	υZ

6.5. Задания для самостоятельной работы	83
Раздел 7. Задания 7	89
7.1. Общие вопросы	90
7.2. Теоретические сведения и основные понятия	
7.3. Выполнение задания из примера	93
7.4. Задания для самостоятельной работы	
Раздел 8. Задания 8	95
8.1. Общие вопросы	96
8.2. О кругах Эйлера	96
8.3. Задания с двумя словами в запросе	99
8.3.1. Общие вопросы	99
8.3.2. Пример 1 задания	. 100
8.3.3. Пример 2 задания	
8.3.4. Задания для самостоятельной работы	
8.4. Задания с тремя словами в запросе	
8.4.1. Общие вопросы	
8.4.2. Пример задания и методика его выполнения	
8.4.3. Задания для самостоятельной работы	
8.5. Задания с тремя словами и скобками в запросе	
8.5.1. Примеры заданий и методика их выполнения	
8.5.2. Задания для самостоятельной работы	
8.5.3. Вопросы для закрепления	
8.6. Задания с четырьмя словами в запросе	
8.6.1. Примеры заданий и методика их выполнения	
8.6.2. Задания для самостоятельной работы	. 115
Раздел 9. Задания 9	. 117
9.1. Общие вопросы	. 118
9.2. Один из методов выполнения задания	. 118
9.3. Задания для самостоятельной работы	. 122
Раздел 10. Задания 10	. 125
10.1. Общие вопросы	126
10.2. Методика выполнения заданий первого типа	

10.3. Методика выполнения заданий второго типа	. 132
10.4.2. Перевод чисел из восьмеричной системы счисления в двоичную и обратно	
счисления в двоичную и обратно	
счисления в четверичную и обратно	136
Раздел 11. Задания 12	139
11.1. Общие вопросы	140
11.2. Примеры заданий и методика их выполнения	141
11.3. Задания для самостоятельной работы	147
Раздел 12. Задания 11	148
12.1. Общие вопросы	149
12.2. Примеры заданий и методика их выполнения	149
12.3. Задания для самостоятельной работы	154
Раздел 13. Задания 13. Вариант 13.1	. 155
13.1. Общие вопросы	156
13.2. Перечень необходимых умений по созданию	1 5 0
презентаций	
13.4. Задания для самостоятельной работы	
Раздел 14. Задания 13. Вариант 13.2	168
14.1. Общие вопросы	169
текстового документа	170
14.2.1. Оформление символов текста	
14.2.2. Оформление абзацев	
14.2.3. Оформление таблиц	
14.3. Рекомендации по выполнению задания	
14.4. Задания для самостоятельной работы	

Раздел 15. Задания 14	183
15.1. Общие вопросы	184
15.2. Пример задания первого типа и методика его	
выполнения	184
15.3. Пример задания второго типа и методика его	
выполнения	194
15.4. Задания для самостоятельной работы	196
15.4. Дополнение	203
Раздел 16. Задания 15. Вариант 15.1	205
16.1. Общие вопросы	
16.2. Система команд Робота	
16.3. Группа 1 задач «Задачи на перемещение Робота	207
до ближайшей стены»	209
16.4. Группа 2 задач «Задачи на перемещение Робота	
до конца стены»	211
16.5. Группа 3 задач «Задачи на перемещение Робота	
рядом с проходом»	212
16.6. Алгоритм решения задачи применительно	
к обстановке на рис. 16.1	212
16.7. Задания для самостоятельной работы	
•	
Раздел 17. Задания 15. Вариант 15.2	217
17.1. Общие вопросы.	218
17.2. Типовые задачи и методика их решения	
17.2.1. Типовая задача 1 «Суммирование всех чисел	
последовательности»	220
17.2.2. Типовая задача 2 «Суммирование чисел	
последовательности, которые обладают некоторыми	
свойствами (удовлетворяют некоторому условию)»	221
17.2.3. Типовая задача 3 «Подсчет количества чисел	
последовательности, которые обладают некоторыми	
свойствами»	222
17.2.4. Типовая задача 4 «Определение среднего	
арифметического тех чисел последовательности, которые	
обладают некоторыми свойствами»	223


17.2.5. Типовая задача 5 «Определение максимального	
значения в последовательности чисел»	224
17.2.6. Типовая задача 6 «Определение порядкового	
номера максимального значения в последовательности	
чисел»	227
17.2.7. Типовая задача 7 «Определение максимального	
значения с заданными свойствами в последовательности	
чисел»	228
17.2.8. Типовая задача 8 «Определение порядкового номера	
максимального значения с заданными	
свойствами в последовательности чисел»	229
17.3. Задания для самостоятельной работы	231
17.4. Частный случай задания	234
Литература	.237

Mpeduanosue

Большинство книг, связанных с основным государственным экзаменом (ОГЭ) по информатике, представляют собой сборники заданий для самопроверки или «решебники», в которых приводится решение заданий без подробных комментариев. Данная книга отличается от них тем, что в ней рассказывается о типовых вариантах заданий ОГЭ и особенностях каждого из них, приводятся различные методы их выполнения, даются полезные советы и рекомендации, обеспечивающие ускорение выполнения заданий и уменьшающие вероятность ошибки. После знакомства с этими вопросами читатель может проверить свои знания и умения, выполнив предлагаемые в книге задания для самостоятельной работы.

Кроме учащихся 9-го класса, готовящихся к сдаче ОГЭ, книгу могут использовать учителя и преподаватели информатики. Она будет также полезна учащимся 10-го и 11-го классов, поскольку многие вопросы, рассмотренные в книге, являются полезными для подготовки к ЕГЭ по информатике.

Pasden 1 Bahahna 1

1.1. Общие вопросы

В Спецификации контрольных измерительных материалов для проведения в 2022 году основного государственного экзамена (ОГЭ) по информатике $[1]^1$ в качестве проверяемого результата обучения применительно к заданию 1 указывается «умение оценивать объём памяти, необходимый для хранения текстовых данных».

Тема в федеральном компоненте Государственного образовательного стандарта основного общего образования (ГОС ООО) – «Дискретная форма представления информации. Единицы измерения количества информации» [2]².

Уровень сложности – базовый³.

Максимальный балл за задание - 1.

Примерное время выполнения задания (мин) - 3.

В демонстрационных вариантах контрольных измерительных материалов ОГЭ по информатике нескольких последних лет [3] и в открытом банке заданий ОГЭ [4] представлены задания 1 следующего вида:

«В кодировке *<указывается способ кодировки*⁴> каждый символ кодируется *<указывается число*> битами. Ученик написал текст (в нём нет лишних пробелов):

<приводится некоторый текст, в котором есть пробелы и запятые>

Ученик удалил из текста одно из слов, а также лишние *<указываются символы* >.

При этом размер нового предложения в данной кодировке оказался на *число* байт меньше, чем размер исходного предложения. Напишите в ответе удалённое слово»,

а также задания, отличающиеся тем, что ученик не удаляет одно из слов, а повторяет некоторое слово два раза подряд, добавив

 $^{^1}$ В дальнейшем этот документ будет для краткости указываться как «Спецификация [1]».

² Для других заданий этот источник указываться не будет.

³ Приводится согласно [1]. Для других заданий этот источник также указываться не будет.

⁴ Имеется в виду кодировка символов в текстовом редакторе компьютера.

необходимые символы. Понятно, что при этом размер нового предложения в данной кодировке оказался больше, чем размер исходного предложения (на сколько больше – указывается). Необходимо в ответе написать слово, использованное дважды.

1.2. Примеры заданий и методика их выполнения

1.2.1. Пример 1 [3]

Условие

В одной из кодировок Unicode каждый символ кодируется 16 битами. Ученик написал текст (в нём нет лишних пробелов):

«Ёж, лев, слон, олень, тюлень, носорог, крокодил, аллигатор – дикие животные».

Ученик удалил из списка название одного животного, а также лишние запятую и пробел – два пробела не должны идти подряд.

При этом размер нового предложения в данной кодировке оказался на 16 байт меньше, чем размер исходного предложения. Напишите в ответе удалённое название животного.

Решение

Прежде всего обратим внимание на то, что в условии указаны разные единицы измерения количества информации (биты и байты). Так как 1 байт = 8 бит, то можно сказать, что в указанной в условии кодировке каждый символ кодируется двумя байтами.

После удаления из списка названия одного животного станут лишними запятая и пробел (два пробела не должны идти подряд). По условию ученик удалил и эти два символа.

Так как в результате размер нового предложения в данной кодировке оказался на 16 байт меньше, чем размер исходного предложения, то всего было удалено 16:2=8 символов. Это значит, что в удалённом учеником слове было 8-2=6 символов. Таким единственным названием животных является «тюлень».

Ответ: тюлень.

Можно также все расчёты проводить не в байтах, а в битах.

В этом случае размер нового предложения в указанной в условии кодировке оказался на $16 \times 8 = 144$ бита меньше, чем размер

исходного предложения, а каждый удалённый символ кодируется 16 битами. Это значит, что в удалённом учеником слове было 144: 16 = 8 символов. С учётом удалённых затем лишних запятой и пробела в удалённом названии животного было 8 – 2 = 6 символов. Это название – «тюлень».

Какой из вариантов расчётов лучше, решать вам, читатель.

1.2.2. Пример 2

Условие

В одной из кодировок Unicode каждый символ кодируется 16 битами. Ученик написал текст (в нём нет лишних пробелов):

«Ом, Бор, Кюри, Попов, Джоуль, Рентген, Курчатов, Резерфорд – великие физики».

Фамилию одного учёного ученик написал два раза подряд, добавив необходимые запятую и пробел. При этом размер написанного предложения в данной кодировке оказался на 10 байт больше, чем размер нужного предложения. Напишите в ответе слово, использованное дважды.

Решение

Здесь в результате редактирования текста его размер по сравнению с исходным увеличился. Увеличение составило 10 байт, то есть применительно к указанной кодировке было добавлено 10 : 2 = 5 символов. Из них два символа – это запятая и пробел. Значит, в фамилии ученого было 5 – 2 = 3 буквы. Такой фамилией является «Бор».

Ответ: Бор.

Расчёты с использованием битов:

- увеличение размера предложения составило 10 × 8 = 80 бит;
- применительно к указанной в условии кодировке было добавлено 80 : 16 = 5 символов;
- с учётом добавленных запятой и пробела в указанной дважды фамилии было три буквы («Бор»).

1.3. Задания для самостоятельной работы

1. В кодировке КОИ-8 каждый символ кодируется 8 битами. Ученик написал текст (в нём нет лишних пробелов):

Личи, гуава, дуриан, кумкват, тамаринд, мангустин, джаботикаба – экзотические фрукты.

Ученик вычеркнул из списка название одного фрукта. Заодно он вычеркнул ставшие лишними запятую и пробел – два пробела не должны идти подряд.

При этом размер нового предложения в данной кодировке оказался на 8 байт меньше, чем размер исходного предложения. Напишите в ответе вычеркнутое название экзотического фрукта.

2. В одной из кодировок Unicode каждый символ кодируется 16 битами.

Ученик написал текст (в нём нет лишних пробелов):

И ты издавала таинственный гром, И алчную землю поила дождём.

Ученик вычеркнул из текста одно слово. Заодно он вычеркнул ставший лишним пробел – два пробела не должны идти подряд.

При этом размер нового предложения в данной кодировке оказался на 10 байт меньше, чем размер исходного предложения. Напишите в ответе вычеркнутое слово.

3. В кодировке Windows-1251 каждый символ кодируется 8 битами.

Ученик хотел написать текст (в нём нет лишних пробелов):

ОБЖ, химия, физика, алгебра, биология, география, литература, информатика – школьные предметы.

Одно из названий предметов ученик написал два раза подряд, поставив между одинаковыми словами запятую и один пробел. При этом размер написанного предложения в данной кодировке оказался на 8 байт больше, чем размер нужного предложения. Напишите в ответе название предмета, записанное дважды.

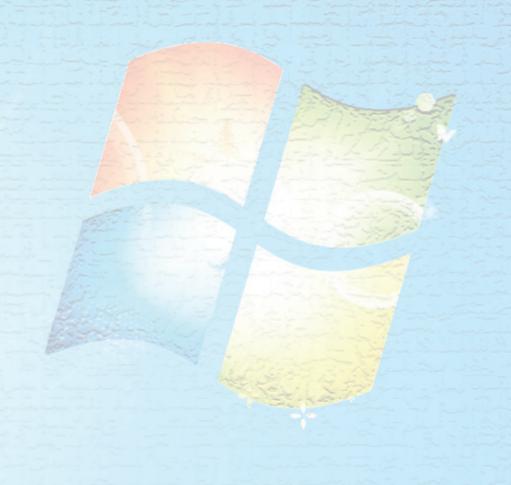
4. В одной из кодировок Unicode каждый символ кодируется 16 битами.

Ученик хотел написать текст (в нём нет лишних пробелов):

Скользя по утреннему снегу, Друг милый, предадимся бегу

Нетерпеливого коня И навестим поля пустые...

Одно из слов ученик написал два раза подряд, поставив между одинаковыми словами один пробел. При этом размер написанного предложения в данной кодировке оказался на 6 байт больше, чем размер нужного предложения. Напишите в ответе лишнее слово.


5. В одной из кодировок Unicode каждый символ кодируется 16 битами.

Ученик написал текст (в нём нет лишних пробелов):

После этого он ушёл из города.

А затем заменил глагол одним из слов убыл, уехал, улетел, умчался. В результате размер текста в этой кодировке оказался на 4 байта больше, чем размер нужного предложения. Напишите в ответе новое слово полученного текста.

Pasden 2 Bapahna 2

2.1. Общие вопросы

В Спецификации [1] в качестве проверяемого результата обучения применительно к заданию 2 указывается «умение декодировать кодовую последовательность».

Тема в федеральном компоненте ГОС ООО – «Кодирование и декодирование информации».

Уровень сложности – базовый.

Максимальный балл за задание - 1.

Примерное время выполнения задания (мин) - 4.

2.2. Примеры заданий и методика их выполнения

В демонстрационных вариантах контрольных измерительных материалов ОГЭ по информатике нескольких последних лет и в открытом банке заданий ОГЭ представлены задания нескольких типов.

2.2.1. Пример 1 [3]

Условие

От разведчика было получено следующее сообщение.

001001110110100

В этом сообщении зашифрован пароль – последовательность русских букв. В пароле использовались только буквы A, Б, K, Л, О, C^1 ; каждая буква кодировалась двоичным словом по следующей таблице²:

A	Б	K	Л	0	С
01	100	101	111	00	110

Расшифруйте сообщение. Запишите в ответе пароль.

Решение

Прежде всего обратим внимание на то, что:

 при шифровании использовано шифрование с помощью двух символов (0 или 1);

¹ По нашему мнению, правильнее было записать: «В пароле могли использоваться только буквы А, Б, К, Л, О, С», поскольку буква С в шифруемом пароле отсутствует, – см. далее.

² Такую таблицу называют «таблицей кодировки», или «кодовой таблицей». Эти термины мы будем использовать далее.

 в таблице кодировки нет односимвольных и четырёхсимвольных кодов.

Рассматриваем начальные символы сообщения.

Два первых символа (01) не могут быть началом кода какой-то другой буквы, кроме О. Выпишем эту букву, а в сообщении зачеркнем два первых символа¹:

001001110110100

Следующие два сообщения (10) не могут быть началом кода, а четырёхсимвольных кодов в таблице кодировки нет. Значит, кодом являются три символа (100), а соответствующая буква – Б.

Также выпишем вторую букву, а в сообщении зачеркнем ещё три символа:

001001110110100

Аналогичными рассуждениями можно получить коды:

- третьей буквы (111) и саму букву (Л);
- четвёртой буквы (01) и саму букву (А);
- пятой буквы (101) и саму букву (К).

001001110110100

Оставшаяся часть зашифрованного сообщения соответствует букве O.

Ответ: ОБЛАКО.

2.2.2. Пример 2

Условие

От разведчика была получена следующая шифрованная радиограмма, переданная с использованием азбуки Морзе.

- · · - · · - - · · - - - ·

При передаче радиограммы было потеряно разбиение на буквы, но известно, что в радиограмме использовались только буквы И, А, Н, Г, Ч, коды которых приведены в таблице.

¹ Можно также скопировать зашифрованное сообщение из задания в текстовый редактор и в нём удалять найденные очередные коды.

И	A	Н	Γ	Ч
	• –	- •	•	•

Определите текст радиограммы. В ответе запишите получившееся слово (набор букв).

Решение

Здесь также применено шифрование с помощью двух символов (тире и точки), но, в отличие от предыдущего задания, четырёхсимвольный код букв в кодовой таблице имеется.

Как и в предыдущей задаче, первая буква зашифрована двумя символами $(-\cdot)$ – это буква H.

_ . . _ . . _ _ . . _ _ _ .

Примечание. Оттенены зачеркнутые символы.

Ищем вторую букву. При этом пробел после кода первой буквы не учитываем (см. условие примера).

Следующие два символа $(\cdot -)$ кодом быть могут, а три $(\cdot - \cdot)$ и четыре $(\cdot - \cdot)^1$ – нет. Значит, вторая буква – А.

_ . . _ . . _ _ . . _ _ . .

Аналогично определяется код третьей буквы (\cdot ·), это код буквы И.

....

Далее – двухсимвольного (– –) и четырёхсимвольного кодов (– \cdot ··) в таблице нет. Значит, код очередной буквы – это – - · (соответствует букве Γ).

Оставшиеся буквы – А (код · -) и Ч.

Итак, все зашифрованное слово НАИГАЧ.

Ответ: НАИГАЧ.

Обратим внимание на то, что ответ не является осмысленным словом, как это было в предыдущем примере.

¹ В отличие от предыдущей задачи, это надо проверить.

2.2.3. Пример 3

Условие

Сообшение:

.0..0.00.0.00.0...0.00

было зашифровано кодом. Известно, что в сообщении могли использоваться только буквы, приведённые в таблице:

A	Б	В	Γ	Д	Е
0	.00	.00.0	.0000	0.	.0.00

Определите, какая(ие) буква(ы) в сообщении повторяет(ют)ся более одного раза, и запишите её (их) в ответе.

Решение

Анализ показывает, что здесь также использовано двухсимвольное кодирование, но длина всех кодов одна и та же¹ (равна 5). Учитывая это, при определении кодов следует рассматривать только 5 очередных символов зашифрованного сообщения.

Поэтому прежде всего целесообразно разбить сообщение на части из пяти символов:

Сравнение выделенных кодов с кодами в таблице кодировки показывает, что был зашифрован текст БВВДЕ. В качестве ответа в условии требуется указать не это слово, а повторяющуюся букву.

Ответ: В.

Обратим внимание на то, что представленные в таблице кодировки буквы А и Г в зашифрованном сообщении отсутствуют.

2.2.4. Пример 4

Условие

Вася и Петя играли в шпионов и кодировали сообщение собственным шифром. Фрагмент кодовой таблицы приведён ниже.

¹ Такой принцип кодирования называют «равномерным».

K	Л	M	Н	0	П
@ +	~+	+@	@~+	+	~

Расшифруйте сообщение:

Получившееся слово (набор букв) запишите в качестве ответа.

Решение

Особенности данного задания:

- при кодировании используются три символа (+, @ и ~);
- в таблице кодировки имеются односимвольные коды.

Первые два символа закодированного сообщения – +~. Так как в кодовой таблице нет кодов, начинающихся этими символами, а односимвольные коды имеются, то первые две буквы зашифрованного текста – О и П.

Аналогично такими же являются третья и четвёртая буквы.

Проанализируем очередные символы шифровки.

Один символ «+» отдельным кодом быть не может, так как следующие за ним один символ @ и два таких символа кодами не являются.

Два очередных символа +@ кодом являются (а три +@@ – нет). Значит, пятая буква – М.

Последняя буква с кодом @~+ это буква.

Ответ: ОПОПМН.

2.2.5. Пример 5

Условие

Ваня шифрует русские слова, записывая вместо каждой буквы её номер в алфавите (без пробелов). Номера букв даны в таблице:

A 1	Й 11	У 21	Э 31
Б 2	K 12	Ф 22	Ю 32
В 3	Л 13	X 23	Я 33
Γ4	M 14	Ц 24	
Д5	H 15	Ч 25	
E 6	0 16	Ш 26	
Ë 7	П 17	Щ 27	
Ж8	P 18	Ъ 28	
3 9	C 19	Ы 29	
И 10	T 20	Ь 30	

Некоторые шифровки можно расшифровать несколькими способами. Например, 311333 может означать ВАЛЯ, может – ЭЛЯ, а может – ВААВВВ.

Даны четыре шифровки:

3135420

2102030

1331320

2033510

Только одна из них расшифровывается единственным способом. Найдите её и расшифруйте. Получившееся слово запишите в качестве ответа.

Решение

При решении следует учесть, что:

- число 0 и числа, большие 33, кодами букв быть не могут;
- цифра 0 в шифровке это вторая цифра двузначного кода с одной из предшествующих цифр 1, 2 или 3.

Выпишем четыре шифровки из условия:

3135420

2102030

1331320

2033510

Проанализируем коды слева направо.

В первой шифровке цепочку кодов 313 можно представить как 3 и 13 или как 31 и 3, то есть её можно расшифровать более чем одним способом.

Во второй шифровке первый слева 0 может только принадлежать коду 10, то есть первый код – 2. Следующие два нуля принадлежат кодам 20 и 30, тогда шифровка расшифровывается однозначно – кодам 2 10 20 и 30 соответствует слово БИТЬ.

Хотя ответ найден, для дополнительных комментариев исследуем (только здесь!) также остальные шифровки.

В третьей шифровке цепочку кодов 133 можно представить как коды 1 и 3 и 3, или как 12 и 3, или как 1 и 33.

В четвёртой шифровке можно выделить начальный (20) и конечный (10) коды. В остальной части шифровки возможна неоднозначная расшифровка.

Ответ: БИТЬ.

2.2.6. Пример 6

Условие

Алексей шифрует русские слова, записывая вместо каждой буквы её код, используя следующую таблицу кодировки:

A	В	Д	0	P	У
01	011	100	111	010	001

Некоторые цепочки можно расшифровать не одним способом. Например, 00101001 может означать не только УРА, но и УАУ.

Даны три кодовые цепочки:

11101001 01001010 010111011

Найдите среди них ту, которая имеет только одну расшифровку, и запишите в ответе расшифрованное слово.

Решение

По сути, данное задание аналогично предыдущему, с той разницей, что при шифровании используется другая кодовая таблица.

Для решения следует исследовать каждую кодовую цепочку до нахождения нужной (расшифровываемой однозначно) так, как выполнялись задания примеров 1–4.

A	В	Д	0	P	У
01	011	100	111	010	001

В первой цепочке возможны коды букв 111, 010 и 01 либо 11, 01 и 001, то есть расшифровка неоднозначная.

Аналогично и вторая цепочка – для неё возможны два варианта расшифровки с кодами букв 01, 001 и 010 или 010, 01 и 010.

Третья шифровка расшифровывается однозначно – в ней зашифровано слово РОВ (коды букв 010, 111 и 011).

Ответ: POB.

2.3. Рекомендации по выполнению задания

- 1. Обратите внимание на:
- количество различных символов, используемых для кодирования в таблице кодировки, 2 или 3; в качестве кодирующих символов могут быть использованы буквы, цифры, знаки препинания, специальные символы (@, &, # и др.);
- длина кодов (количество символов в каждом из кодов, приведённых в таблице кодировки); может равняться 1, 2, ...,
 5 символам. Коды отсутствующей длины при анализе рассматривать не нужно.
- 2. Начиная с начала зашифрованного сообщения, нужно последовательно определять код очередной буквы и соответствующую букву.
- 3. Если в зашифрованном сообщении и «внутри» кодов имеются пробелы (как правило, это имеет место при кодировании с помощью точек и тире), то при расшифровке они не должны учитываться следует анализировать только точки и тире (см. пример 2 задания).
- 4. Целесообразно выписать зашифрованное сообщение и по мере определения кода очередной буквы зачеркивать его (см. также сноску на стр. 18).
- 5. После расшифровки начала зашифрованного текста нельзя подбирать весь текст по смыслу (например, после получения слова ОБЛА нельзя принять в качестве ответа ОБЛАКО).
- 6. Обратите внимание на то, что ответом может быть не только все зашифрованное слово, но и некоторые буквы из него (например, повторяющиеся), или количество некоторых букв, или общее количество букв в зашифрованном слове.

Для заданий, аналогичных заданиям примеров 5 и 6, после нахождения цепочки с однозначной расшифровкой исследовать остальные, естественно, не следует. Не нужно также определять

возможные зашифрованные слова в цепочках с неоднозначной расшифровкой.

2.4. Задания для самостоятельной работы

1. Мальчики играли в «шпионов» и закодировали сообщение придуманным шифром. Для него кодовая таблица такая:

В	0	Л	Γ	A
110	01	100	10	11

Определите, какое сообщение закодировано в строчке:

11010001100

В ответе запишите получившееся слово (набор букв).

2. Сообщение

было зашифровано кодом. Известно, что в сообщении могли использоваться только буквы и их коды, приведённые в таблице:

A	Б	В	Γ	Д	Е
&&@&	@&&@	&@@&	@@@&	&&&@	&@&@

Определите, какая(ие) буква(ы) в сообщении повторяет(ют)ся более одного раза, и запишите её (их) в ответе.

3. Сообщение

было зашифровано кодом. Известно, что в сообщении могли использоваться только буквы и их коды, приведённые в таблице:

A	Б	В	Γ	Д	Е
&&@&	@&&@	&@@&	@@@&	&&&@	&@&@

Определите, какая(ие) буква(ы) в сообщении повторяет(ют)ся более одного раза, и запишите её (их) в ответе.

4. Мальчики играли в «шпионов» и закодировали сообщение придуманным шифром. Для него кодовая таблица такая:

M	Е	Ч	Т	A
01	100	110	101	10

Определите, какое сообщение закодировано в строчке:

1101000110

В ответе запишите получившееся слово (набор букв).

5. Мальчики играли в «шпионов» и закодировали сообщение придуманным шифром. Для него кодовая таблица такая:

A	Б	В	Γ	Д	Е	Ж
10	110	12	102	0	22	122

Определите, сколько букв содержит сообщение:

101212210102

В ответе запишите число - количество букв.

6. Сообшение

1001010100100001101110110

было зашифровано кодом. Известно, что в сообщении могли использоваться только следующие буквы и их коды:

A	Б	В	Γ	Д	Е
11011	10110	10010	10000	11101	10100

Определите текст сообщения. В ответе запишите получившееся слово (набор букв).

7. От разведчика была получена следующая шифрованная радиограмма, переданная с использованием азбуки Морзе:

. . – . . . – . – . – –

При передаче радиограммы было потеряно разбиение на буквы, но известно, что в радиограмме использовались только следующие буквы и их коды:

Т	A	У	Ж	X
_	• –	• • -	• • • -	

Определите текст радиограммы.

В ответе запишите получившееся слово (набор букв).

8. От разведчика была получена следующая шифрованная радиограмма, переданная с использованием азбуки Морзе.

. – – – . . – – – – .

При передаче радиограммы было потеряно разбиение на буквы, но известно, что в радиограмме использовались только следующие буквы и их коды:

M	Н	С	У	A
	- •		• • -	• –

Определите текст радиограммы. В ответе запишите получившееся слово (набор букв).

9. Митя шифрует русские слова, записывая вместо каждой буквы её номер в алфавите (без пробелов). Номера букв даны в таблице:

A 1	Й 11	У 21	Э 31
Б2	K 12	Ф 22	Ю 32
В 3	Л 13	X 23	Я 33
Γ4	M 14	Ц 24	
Д5	H 15	Ч 25	
E 6	0 16	Ш 26	
Ë 7	П 17	Щ 27	
Ж 8	P 18	Ъ 28	
3 9	C 19	Ы 29	
И 10	T 20	Ь 30	

10. Вася шифрует русские слова, записывая вместо каждой буквы её номер в алфавите (без пробелов). Номера букв даны в таблице:

A 1	Й 11	У 21	Э 31
Б2	K 12	Ф 22	Ю 32
В 3	Л 13	X 23	Я 33
Γ4	M 14	Ц 24	
Д5	H 15	Ч 25	
E 6	0 16	Ш 26	
Ë 7	П 17	Щ 27	
Ж8	P 18	Ъ 28	
3 9	C 19	Ы 29	
И 10	T 20	Ь 30	

Некоторые шифровки можно расшифровать несколькими способами. Например, 12112 может означать АБАК, может – КАК, а может – «АБААБ».

Даны четыре шифровки:

20335

21120

31321

51201

Только одна из них расшифровывается единственным способом. Найдите её и расшифруйте. То, что получилось, запишите в качестве ответа.

11. Петя шифрует русские слова, записывая вместо каждой буквы её номер в алфавите (без пробелов). Номера букв даны в таблице:

A 1	Й 11	У 21	Э 31
Б2	K 12	Ф 22	Ю 32
В 3	Л 13	X 23	Я 33
Γ4	M 14	Ц 24	
Д5	H 15	Ч 25	
E 6	0 16	Ш 26	
Ë 7	П 17	Щ 27	
Ж 8	P 18	Ъ 28	
3 9	C 19	Ы 29	
И 10	T 20	Ь 30	

Он подготовил для своего друга Вани четыре шифровки:

112233

135793

203014

412030

Но, к сожалению, он понял, что только одна из них расшифровывается единственным способом. Найдите её и расшифруйте. То, что получилось, запишите в качестве ответа.

12. Максим шифрует русские слова, записывая вместо каждой буквы её код, используя следующую таблицу кодировки:

A	В	Д	0	P	У
01	011	100	111	010	001

Некоторые цепочки можно расшифровать не одним способом. Например, 00101001 может означать не только УРА, но и УАУ.

Даны три кодовые цепочки:

01001001

11101001

10001010

Найдите среди них ту, которая имеет только одну расшифровку, и запишите в ответе расшифрованное слово.

13. Антон шифрует русские слова (последовательности букв), записывая вместо каждой буквы её код, используя следующую таблицу кодировки:

A	Д	K	Н	0	С
01	100	101	10	111	000

Некоторые шифровки можно расшифровать не одним способом. Например, 00010101 может означать не только СКА, но и СНК.

Даны три кодовые цепочки:

1010110

11110001

100000101

Найдите среди них ту, которая имеет только одну расшифровку, и запишите в ответе расшифрованное слово.