Содержание

Предисловие	16
Благодарности	17
Глава 1. Введение	19
1.1. История	19
1.2. Процесс оптимизации	22
1.3. Основная задача оптимизации	23
1.4. Ограничения	25
1.5. Критические точки	26
1.6. Условия локального минимума	27
1.6.1. Одномерный случай	28
1.6.2. Многомерный случай	29
1.7. Изолинии	31
1.8. Обзор	32
1.9. Резюме	36
1.10. Упражнения	36
Глава 2. Производные и градиенты	37
2.1. Производные	37
2.2. Производные нескольких переменных	39
2.3. Численное дифференцирование	41
2.3.1. Методы конечных разностей	42
2.3.2. Метод комплексного шага	44
2.4. Автоматическое дифференцирование	45
2.4.1. Метод прямого аккумулирования	46
2.4.2. Метод обратного аккумулирования	49
2.5. Резюме	51
2.6. Упражнения	51
Глава 3. Метод интервалов	53
3.1. Одномодальность	53
3.2. Нахождение начального интервала	54
3.3. Алгоритм поиска Фибоначчи	55
3.4. Метод золотого сечения	58
3.5. Метод квадратичной аппроксимации	61
3.6. Метод Шуберта-Пиявского	63

	СОДЕРЖАНИЕ	7
3.7. Метод бисекции		67
3.8. Резюме		70
3.9. Упражнения		70
Глава 4. Метод локального спуска		71
4.1. Метод спуска		71
4.2. Линейный поиск		72
4.3. Приближенный линейный поиск		74
4.4. Методы доверительных областей		79
4.5. Условия завершения итераций		84
4.6. Резюме		85
4.7. Упражнения		85
Глава 5. Методы первого порядка		87
5.1. Градиентный спуск		87
5.2. Метод сопряженных градиентов		89
5.3. Метод моментов		93
5.4. Метод Нестерова		94
5.5. Метод Adagrad		95
5.6. Метод RMSProp		96
5.7. Метод Adadelta		97
5.8. Метод Adam		98
5.9. Гиперградиентный спуск		100
5.10. Резюме		102
5.11. Упражнения		102
Глава 6. Методы второго порядка		105
6.1. Метод Ньютона		105
6.2. Метод секущих		109
6.3. Квазиньютоновские методы		110
6.4. Резюме		114
6.5. Упражнения		115
Глава 7. Прямые методы		119
7.1. Циклический поиск координат		119
7.2. Метод Пауэлла		121
7.3. Метод Хука–Дживса		123
7.4. Обобщенный поиск по шаблону		124

7.5. Симплекс-метод Нелдера-Мида	126
7.6. Разделенные прямоугольники	131
7.6.1. Односторонний метод DIRECT	132
7.6.2. Многомерный метод DIRECT	136
7.6.3. Реализация	137
7.7. Резюме	142
7.8. Упражнения	143
Глава 8. Стохастические методы	145
8.1. Шумный спуск	145
8.2. Метод адаптивного прямого поиска на сетке	147
8.3. Имитация отжига	150
8.4. Метод перекрестной энтропии	157
8.5. Стратегии естественной эволюции	159
8.6. Адаптация ковариационной матрицы	161
8.7. Резюме	167
8.8. Упражнения	168
Глава 9. Популяционные методы	169
9.1. Инициализация	169
9.2. Генетические алгоритмы	171
9.2.1. Хромосомы	171
9.2.2. Инициализация	172
9.2.3. Отбор	173
9.2.4. Кроссовер	175
9.2.5. Мутация	177
9.3. Дифференциальная эволюция	179
9.4. Оптимизация методом роя частиц	180
9.5. Алгоритм светлячка	182
9.6. Метод кукушки	184
9.7. Гибридные методы	186
9.8. Резюме	188
9.9. Упражнения	188
Глава 10. Ограничения	189
10.1. Условная оптимизация	189
10.2. Виды ограничений	190
10.3. Преобразования для снятия ограничений	191

	СОДЕРЖАНИЕ	9
10.4. Множители Лагранжа		193
10.5. Ограничения в виде неравенства		196
10.6. Двойственность		199
10.7. Методы штрафных функций		203
10.8. Расширенный метод Лагранжа		206
10.9. Методы внутренних точек		207
10.10. Резюме		209
10.11. Упражнения		209
Глава 11. Оптимизация с линейными ограничениями		213
11.1. Условная оптимизация		213
11.1.1 Общий вид		215
11.1.2. Стандартный вид		215
11.1.3. Форма с ограничениями в виде равенства		217
11.2. Симплекс-метод		220
11.2.1. Вершины		220
11.2.2. Необходимые условия первого порядка		224
11.2.3. Этап оптимизации		225
11.2.4. Этап инициализации		229
11.3. Двойственные сертификаты		233
11.4. Резюме		234
11.5. Упражнения		235
Глава 12. Многокритериальная оптимизация		237
12.1. Оптимальность по Парето		237
12.1.1. Доминирование		238
12.1.2. Граница Парето		239
12.1.3. Создание границы Парето		240
12.2. Методы ограничения		242
12.2.1. Метод ограничений		242
12.2.2. Лексикографический метод		242
12.3. Весовые методы		243
12.3.1. Метод взвешенной суммы		243
12.3.2. Целевое программирование		245
12.3.3. Метод взвешенной экспоненциальной суммы		245
12.3.4. Взвешенный метод min-max		246
12.3.5. Экспоненциально-взвешенный критерий		247

12.4. Популяционные многокритериальные методы	247
12.4.1. Подпопуляции	247
12.4.2. Ранги недоминирования	249
12.4.3. Фильтры Парето	250
12.4.4. Нишевые методы	251
12.5. Выявление предпочтений	253
12.5.1. Идентификация модели	253
12.5.2. Выбор парных запросов	255
12.5.3. Выбор проекта	256
12.6. Резюме	257
12.7. Упражнения	258
Глава 13. Планы выбора	259
13.1. Полный факторный план	259
13.2. Случайный выбор	260
13.3. Планы равномерной проекции	261
13.4. Стратифицированный выбор	263
13.5. Параметры, заполняющие пространство	263
13.5.1. Несоответствие	264
13.5.2. Попарные расстояния	266
13.5.3. Критерий Морриса-Митчелла	267
13.6. Подмножества, заполняющие пространство	268
13.7. Квазислучайные последовательности	271
13.7.1. Аддитивная рекурсия	272
13.7.2. Последовательность Холтона	273
13.7.2. Последовательность Соболя	274
13.8. Резюме	275
13.9. Упражнения	276
Глава 14. Суррогатные модели	277
14.1. Обучение суррогатных моделей	277
14.2. Линейные модели	278
14.3. Базисные функции	280
14.3.1. Полиномиальные базисные функции	281
14.3.2. Синусоидальные базисные функции	282
14.3.3. Радиальные базовые функции	285
14.4. Приближение целевых функций с шумом	286
14.5. Выбор модели	287
14.5.1. Отложенные множества	290

	СОДЕРЖАНИЕ	11
14.5.2. Перекрестная проверка		292
14.5.3. Бутстрэп		295
14.6. Резюме		298
14.7. Упражнения		298
Глава 15. Вероятностные суррогатные модели		299
15.1. Нормальное распределение		299
15.2. Гауссовские процессы		301
15.3. Предсказание		304
15.4. Информация о градиенте		307
15.5. Информация о шуме		309
15.6. Подгонка гауссовских процессов		311
15.7. Резюме		312
15.8. Упражнения		312
Глава 16. Суррогатная оптимизация		315
16.1. Исследование, основанное на предсказании		315
16.2. Исследование на основе ошибок		316
16.3. Исследование на основе нижнего доверительной граници	Ы	316
16.4. Исследование на основе вероятности улучшения		317
16.5. Исследование на основе ожидаемого улучшения		318
16.6. Безопасная оптимизация		321
16.7. Резюме		329
16.8. Упражнения		329
Глава 17. Оптимизация в условиях неопределенности		331
17.1. Неопределенность		331
17.2. Неопределенность на основе множеств		333
17.2.1. Минимакс		333
17.2.2. Теория информационных пробелов при принятии	и решений	336
17.3. Вероятностная неопределенность	•	337
17.3.1. Ожидаемое значение		338
17.3.2. Дисперсия		339
17.3.3. Статистическая допустимость		341
17.3.4. Стоимостная мера риска		341
17.3.5. Условная стоимостная мера риска		341
17.4. Резюме		342
17.5. Упражнения		342

Глава 18. Распространение неопределенности	345
18.1. Методы выбора	345
18.2. Аппроксимация с помощью ряда Тейлора	346
18.3. Полиномиальный хаос	347
18.3.1. Одномерный случай	348
18.3.2. Коэффициенты	357
18.3.3. Многомерный случай	357
18.4. Байесовский метод Монте-Карло	359
18.5. Резюме	362
18.6. Упражнения	363
Глава 19. Дискретная оптимизация	365
19.1. Задачи целочисленного программирования	365
19.2. Округление	367
19.3. Метод секущих плоскостей	370
19.4. Метод ветвей и границ	374
19.5. Динамическое программирование	378
19.6. Муравьиный алгоритм	382
19.7. Резюме	386
19.8. Упражнения	386
Глава 20. Оптимизация выражений	389
20.1. Грамматика	389
20.2. Генетическое программирование	393
20.3. Грамматическая эволюция	397
20.4. Вероятностные грамматики	403
20.5. Вероятностные деревья прототипов	405
20.6. Резюме	412
20.7. Упражнения	412
Глава 21. Междисциплинарная оптимизация	415
21.1. Дисциплинарный анализ	415
21.2. Междисциплинарная совместимость	417
21.3. Архитектура	421
21.4. Допустимая архитектура междисциплинарного проекта	423
21.5. Последовательная оптимизация	424
21.6. Допустимая архитектура отдельной дисциплины	428

	СОДЕРЖАНИЕ	13
21.7. Совместная оптимизация		429
21.8. Архитектура одновременного анализа и проектирования		433
21.9. Резюме		435
21.10. Упражнения		436
Приложение А. Язык Julia		439
А.1. Типы		439
А.1.1. Логические типы		439
А.1.2. Числа		440
А.1.3. Строки		441
А.1.4. Векторы		441
А.1.5. Матрицы		443
А.1.6. Кортежи		445
А.1.7. Словари		445
А.1.8. Составные типы		446
А.1.9. Абстрактные типы		446
А.1.10. Параметрические типы		448
А.2. Функции		448
А.2.1. Именованные функции		448
А.2.2. Анонимные функции		449
А.2.3. Необязательные аргументы		449
А.2.4. Именованные аргументы		449
А.2.5. Перегрузка функций		450
А.3. Управление потоком выполнения		450
А.3.1. Условная оценка		451
А.3.2. Циклы		451
А.4. Пакеты		452
Приложение Б. Тестовые функции		453
Б.1. Функция Экли		453
Б.2. Функция Бута		454
Б.3. Функция Бранина		455
Б.4. Функция цветка		456
Б.5. Функция Михалевича		457
Б.б. Банановая функция Розенброка		458
Б.7. Гребень Уилера		459
Б.8. Функция круга		460

Приложение В. Математические понятия	461
В.1. Асимптотические обозначения	461
В.2. Разложение Тейлора	463
В.3. Выпуклость	465
В.4. Нормы	466
В.5. Матричное исчисление	468
В.б. Положительная определенность	469
В.7. Нормальное распределение	470
В.8. Метод Гаусса	470
Приложение Г. Решения	475
Библиография	509
Предметный указатель	519

Глава 15

Вероятностные суррогатные модели

В предыдущей главе рассказывалось, как построить суррогатные модели по расчетным точкам. Используя суррогатные модели для оптимизации, иногда возникает необходимость количественно оценить уверенность в предсказаниях этих моделей. Один из способов — использовать вероятностный подход к суррогатному моделированию. Распространенной вероятностной суррогатной моделью является гауссовский процесс, который представляет распределение вероятностей по функциям. В этой главе будет объяснено, как использовать гауссовские процессы, чтобы вывести распределение по значениям различных проектных точек, учитывая значения ранее вычисленных расчетных точек. Мы обсудим, как включить информацию о градиенте, а также зашумленные измерения целевой функции. Поскольку предсказания, сделанные гауссовским процессом, регулируются набором параметров, мы покажем, как вывести эти параметры непосредственно из данных.

15.1. Нормальное распределение

Прежде чем вводить гауссовские процессы, рассмотрим некоторые соответствующие свойства многомерного нормального распределения.

1 Многомерное нормальное распределение имеет параметры — математическое ожидание μ и ковариационную матрицу Σ Плотность вероятности в точке κ задается формулой

$$N(\mathbf{x}|\mathbf{\mu}, \mathbf{\Sigma}) = (2\pi)^{-n/2} |\mathbf{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right).$$
(15.1)

На рис. 15.1 показаны линии уровня функций плотности с различной ковариационной матрицей. Ковариационные матрицы всегда являются положительно полуопределенными.

Значение, выбранное из нормального распределения, записывается в виде

$$\mathbf{x} \sim \mathcal{N}(\mathbf{\mu}, \mathbf{\Sigma}).$$
 (15.2)

¹ Одномерное нормальное распределение обсуждается в приложении В.7.

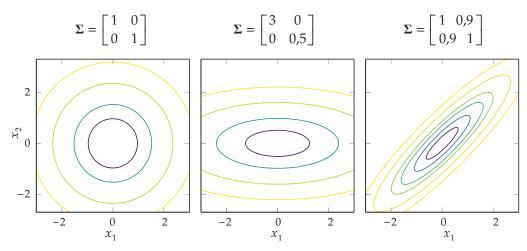


Рис. 15.1. Многомерные нормальные распределения с разными ковариационными матрицами

Две случайные величины **a** и **b**, имеющие совместное нормальное распределение, можно записать в виде

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{bmatrix} \boldsymbol{\mu}_{\mathbf{a}} \\ \boldsymbol{\mu}_{\mathbf{b}} \end{bmatrix}, \begin{bmatrix} \mathbf{A} & \mathbf{C} \\ \mathbf{C}^{T} & \mathbf{B} \end{bmatrix}$$
 (15.3)

*Маргинальное распределение*² для вектора случайных величин задается соответствующими математическим ожиданием и ковариацией:

$$\mathbf{a} \sim \mathcal{N}(\boldsymbol{\mu}_{a},\,\mathbf{A}),\, \mathbf{a} \sim \mathcal{N}(\boldsymbol{\mu}_{b},\,\mathbf{B}). \tag{15.4}$$

Условное распределение многомерного нормального распределения также можно представить в замкнутом виде:

$$\mathbf{a} \mid \mathbf{b} = \mathcal{N}(\mathbf{\mu}_{\mathsf{alb}}, \mathbf{\Sigma}_{\mathsf{alb}}), \tag{15.5}$$

$$\mu_{a|b} = \mu_a + CB^{-1}(b - \mu_b),$$
 (15.6)

$$\Sigma_{a1b} = \mathbf{A} - \mathbf{C}\mathbf{B}^{-1}\mathbf{C}^{\mathrm{T}}.$$
 (15.7)

Пример 15.1 иллюстрирует, как определить маргинальное и условное распределения многомерного нормального распределения.

Пример 15.1. Маргинальное и условное распределения многомерного нормального распределения

$$p(a) = \int p(a, b) db.$$

² Маргинальное распределение — это распределение подмножества переменных при условии, что остальные исключены путем интегрирования, т.е. маргинализированы. Для распределения по двум переменным a и b маргинальное распределение по a имеет вид:

Например, рассмотрим

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \right).$$

Маргинальное распределение по x_1 равно $\mathcal{N}(0, 3)$, а маргинальное распределение по $x_2 \longrightarrow \mathcal{N}(1, 2)$.

Условное распределение по x_1 при $x_2 = 2$ определяется следующим образом.

$$\begin{split} &\mu_{x_1|x_2=2} = 0 + 1 \cdot 2^{-1} \cdot (2 - 1) = 0,5; \\ &\Sigma_{x_1|x_2=2} = 3 - 1 \cdot 2^{-1} \cdot 1 = 2,5; \\ &x_1 \big| \big(x_2 = 2 \big) \sim \mathcal{N} \big(0,5; \, 2,5 \big). \end{split}$$

15.2. Гауссовские процессы

В предыдущей главе мы аппроксимировали целевую функцию f, используя суррогатную модельную функцию \hat{f} , приближенную по ранее найденным расчетным точкам. Специальный тип суррогатной модели, известный как $\it cayccosckuŭ$ $\it npouecc$, позволяет не только прогнозировать f, но и количественно определять неопределенность в этом прогнозе, используя распределение вероятностей. 3

Гауссовский процесс — это распределение по функциям. Для любого конечного множества точек $\{\mathbf{x}^{(1)},...,\mathbf{x}^{(m)}\}$ ассоциированные с ними значения функций $\{y_1,...,y_m\}$ распределяются по формуле

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \sim N \begin{bmatrix} m(\mathbf{x}^{(1)}) \\ \vdots \\ m(\mathbf{x}^{(m)}) \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}^{(1)}, \mathbf{x}^{(1)}) & \dots & k(\mathbf{x}^{(1)}, \mathbf{x}^{(m)}) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}^{(m)}, \mathbf{x}^{(1)}) & \dots & k(\mathbf{x}^{(m)}, \mathbf{x}^{(m)}) \end{bmatrix} \right), \quad (15.8)$$

где $m(\mathbf{x})$ — функция математического ожидания, а $k(\mathbf{x}, \mathbf{x}')$ — ковариационная функция, или я дро. Функция математического ожидания может представлять предварительные знания о функции. Ядро контролирует гладкость функций. Способы построения вектора математических ожиданий и ковариационной матрицы с использованием функции математического ожидания и ковариационной функции приведены в алгоритме 15.1.

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}\left[\left(f(\mathbf{x}) - m(\mathbf{x})\right)\left(f(\mathbf{x}') - m(\mathbf{x}')\right)\right].$$

³ Более подробное введение в гауссовские процессы изложено в [126].

⁴ Значением функции математического ожидания является математическое ожидание: $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$, а значением ковариационной функции является ковариация:

Алгоритм 15.1. Функция μ для построения вектора математических ожиданий при заданном списке расчетных точек и функция математического ожидания m, а также функция Σ для построения ковариационной матрицы при заданных одном или двух списках расчетных точек и ковариационной функции k

```
\begin{split} & \mu(X, \ m) \ = \ [m(x) \ \text{for } x \ \text{in } X] \\ & \Sigma(X, \ k) \ = \ [k(x, \ x') \ \text{for } x \ \text{in } X, \ x' \ \text{in } X] \\ & K(X, \ X', \ k) \ = \ [k(x, \ x') \ \text{for } x \ \text{in } X, \ x' \ \text{in } X'] \end{split}
```

Широко распространенной функцией ядра является квадрат экспоненциального ядра (squared exponential kernel), где

$$k(x, x') = \exp\left(-\frac{(x - x')^2}{2l^2}\right).$$
 (15.9)

Параметр l соответствует так называемому характеристическому масштабу длины, рассматриваемой как расстояние, которое мы должны пройти в пространстве проектирования до тех пор, пока значение целевой функции существенно не изменится. Следовательно, большие значения l приводят к более гладким функциям. На рис. 15.2 показаны функции, выбранные из процесса Гаусса с функцией с нулевым математическим ожиданием и квадратом экспоненциального ядра с различными характеристическими масштабами длины. 5

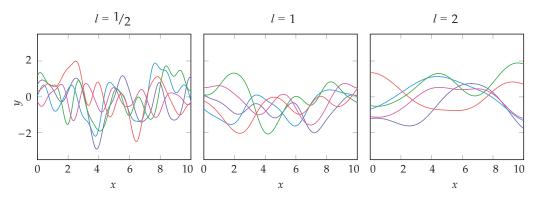


Рис. 15.2. Функции, извлеченные из гауссовских процессов с квадратами экспоненциальных ядер

Помимо квадрата экспоненты существует много других функций ядра,. Некоторые из них показаны на рис. 15.3. Многие функции ядра используют параметр r, который является расстоянием между \mathbf{x} и \mathbf{x}' . Обычно используется евклидово расстояние. Ядро Матерна (Matérn kernel) применяет гамма-функцию Γ , реализо-

⁵ Математическое определение характерной шкалы длины предоставлено в [126].

ванную функцией gamma, а $K_{\nu}(x)$ — модифицированную функцию Бесселя второго рода, реализованную функцией besselk (ν , \mathbf{x}). Ядро нейронной сети дополняет каждый расчетный вектор одним для простоты обозначения: $\overline{\mathbf{x}} = [1, x_1, x_2, ...]$ и $\overline{\mathbf{x}}' = [1, x_1', x_2', ...]$.

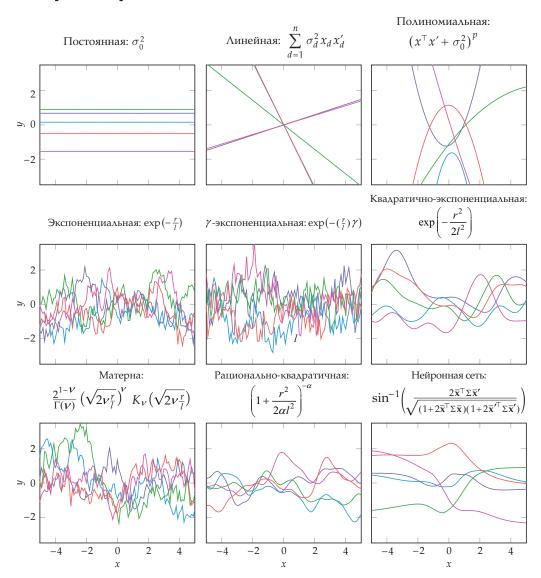


Рис. 15.3. Функции, извлеченные из гауссовских процессов с различными функциями ядра. Показаны функции для $\sigma_0^2 = \sigma_d^2 = l = 1, \ p = 2, \ \gamma = v = \alpha = 0,5 \ \text{и} \ \Sigma = \mathbf{I}$

Для простоты эта глава будет сосредоточена на примерах гауссовских процессов в одномерных пространствах проектирования. Однако гауссовские процессы

304 Глава 15. Вероятностные суррогатные модели

могут быть определены в многомерном пространстве проектирования, как показано на рис. 15.4.

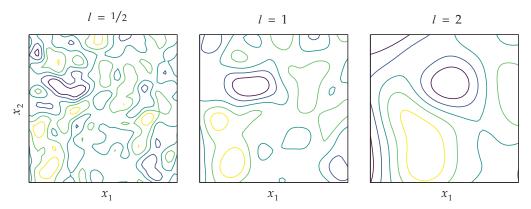


Рис. 15.4. Функции, извлеченные из гауссовских процессов

Как мы увидим в разделе 15.5, гауссовские процессы также могут включать в себя априорную зависимую дисперсию шума, обозначаемую как *v*. Таким образом, гауссовский процесс определяется функцией математического ожидания и ковариационной функцией, предыдущими расчетными точками и оценками их функций, а также дисперсией шума. Ассоциированный с ним тип приведен в алгоритме 15.2.

Алгоритм 15.2. Гауссовский процесс определяется функцией математического ожидания \mathbf{m} , ковариационной функцией \mathbf{k} , выборочными расчетными векторами \mathbf{X} и их соответствующими значениями целевой функции \mathbf{y} и дисперсией шума \mathbf{v}

```
mutable struct GaussianProcess

m # математическое ожидание

k # функция ковариации

X # расчетные точки

у # значения целевой точки

v # дисперсия шума

end
```

15.3. Предсказание

Гауссовские процессы могут представлять распределения по функциям с использованием условных вероятностей. Предположим, у нас уже есть набор точек X и соответствующий вектор \mathbf{y} , но мы хотим предсказать значения $\hat{\mathbf{y}}$ в точках X^* . Совместное распространение таково:

$$\begin{bmatrix} \hat{\mathbf{y}} \\ \mathbf{y} \end{bmatrix} \sim \mathcal{N} \begin{bmatrix} \mathbf{m}(X^*) \\ \mathbf{m}(X) \end{bmatrix}, \begin{pmatrix} \mathbf{K}(X^*, X^*) & \mathbf{K}(X^*, X) \\ \mathbf{K}(X, X^*) & \mathbf{K}(X, X) \end{pmatrix}.$$
(15.10)

В приведенном выше уравнении мы используем функции **m** и \mathbf{K} , которые определены следующим образом:

$$\mathbf{m}(X) = \left[m(\mathbf{x}^{(1)}), ..., m(\mathbf{x}^{(n)}) \right], \tag{15.11}$$

$$\mathbf{K}(X, X') = \begin{bmatrix} k(\mathbf{x}^{(1)}, \mathbf{x}'^{(1)}) & \dots & k(\mathbf{x}^{(1)}, \mathbf{x}'^{(m)}) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}^{(n)}, \mathbf{x}'^{(1)}) & \dots & k(\mathbf{x}^{(n)}, \mathbf{x}'^{(m)}) \end{bmatrix}.$$
(15.12)

Условное распределение дается формулой

$$\hat{\mathbf{y}}|\mathbf{y} \sim \mathcal{N}\left(\underbrace{\mathbf{m}(X^*) + \mathbf{K}(X^*, X)\mathbf{K}(X, X)^{-1}(\mathbf{y} - \mathbf{m}(X))}_{\text{Математическое ожидание}}, \underbrace{\mathbf{K}(X^*, X^*) - \mathbf{K}(X^*, X)\mathbf{K}(X, X)^{-1}\mathbf{K}(X, X^*)}_{\text{Ковариация}}\right). \tag{15.13}$$

Обратите внимание на то, что ковариация не зависит от \mathbf{y} . Это распределение часто называют апостериорным распределением. ⁶ Метод вычисления и выборки из апостериорного распределения, определенного гауссовским процессом, приведен в алгоритме 15.3.

Алгоритм 15.3. Функция **mvnrand** осуществляет выборку из многомерного нормального распределения с добавленным коэффициентом инфляции для предотвращения вычислительных проблем. Метод **rand** позволяет выбрать гауссовский процесс **GP** в заданных расчетных точках в матрице **X**

```
function mvnrand(\(\mu\), \(\Sigma\), inflation = 1e-6)

N = MvNormal(\(\mu\), \(\Sigma\) + inflation * I)

return rand(N)
end
Base.rand(GP, X) = mvnrand(\(\mu\)(X, GP.m), \(\Sigma\)(X, GP.k))
```

⁶ На языке байесовской статистики апостериорное распределение — это распределение возможных ненаблюдаемых значений, обусловленных наблюдаемыми значениями.

Прогнозируемое математическое ожидание можно записать как функцию от ж:

$$\hat{\mu}(\mathbf{x}) = m(\mathbf{x}) + \mathbf{K}(\mathbf{x}, X)\mathbf{K}(X, X)^{-1}(\mathbf{y} - \mathbf{m}(X)) =$$
(15.14)

$$= m(\mathbf{x}) + \mathbf{\theta}^{\mathrm{T}} \mathbf{K}(X, \mathbf{x}), \tag{15.15}$$

где $\mathbf{\theta} = \mathbf{K}(X,X)^{-1}(\mathbf{y} - \mathbf{m}(X))$ можно вычислить один раз и повторно использовать для различных значений \mathbf{x} . Обратите внимание на сходство с суррогатными моделями в предыдущей главе. Ценность гауссовского процесса за пределами суррогатных моделей, обсуждавшихся ранее, состоит в том, что он также количественно определяет нашу неуверенность в предсказаниях.

Дисперсия предсказанного математического ожидания также может быть получена как функция от \mathbf{x} :

$$\hat{v}(\mathbf{x}) = \mathbf{K}(\mathbf{x}, \mathbf{x}) - \mathbf{K}(\mathbf{x}, X)\mathbf{K}(X, X)^{-1}\mathbf{K}(X, \mathbf{x}). \tag{15.16}$$

В некоторых случаях удобнее составлять уравнения в терминах стандартного отклонения, которое является квадратным корнем из дисперсии:

$$\hat{\sigma}(\mathbf{x}) = \sqrt{\hat{\nu}(\mathbf{x})}.\tag{15.17}$$

Стандартное отклонение имеет те же единицы измерения, что и математическое ожидание. По стандартному отклонению мы можем вычислить 95%-ную доверительную область, которая представляет собой интервал, содержащий 95% вероятностной массы, связанной с распределением по y при заданном \mathbf{x} . Для конкретного \mathbf{x} 95%-ная доверительная область определяется как $\hat{\mu}(\mathbf{x})\pm 1,96\hat{\sigma}(\mathbf{x})$. Можно использовать доверительный уровень, отличный от 95%, но для графиков в этой главе мы будем использовать 95%. На рис. 15.5 показан график доверительной области, связанной с гауссовым процессом, подходящей для четырех оценок функций.

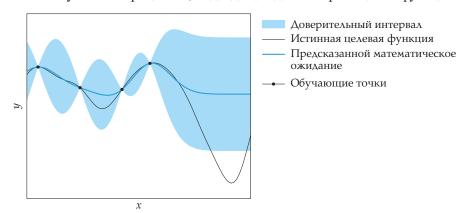


Рис. 15.5. Гауссовский процесс, использующий квадрат экспоненциального ядра и его 95%-ный доверительный интервал. Неопределенность возрастает по мере удаления от точки данных, и ожидаемое значение функции приближается к нулю, когда точка удаляется от данных

15.4. Информация о градиенте

В гауссовские процессы можно включить информацию о градиенте (см., например, [116]), расширив его определение, чтобы учесть как значение функции, так и ее градиент:

$$\begin{bmatrix} \mathbf{y} \\ \nabla \mathbf{y} \end{bmatrix} \sim \mathcal{N} \begin{bmatrix} \mathbf{m}_f \\ \mathbf{m}_{\nabla} \end{bmatrix}, \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{K}_{f\nabla} \\ \mathbf{K}_{\nabla f} & \mathbf{K}_{\nabla \nabla} \end{bmatrix}$$
(15.18)

где $\mathbf{y} \sim \mathcal{N}(\mathbf{m}_f, \mathbf{K}_{f\!f})$ — это традиционный гауссовский процесс, \mathbf{m}_∇ является ковариационной матрицей между значениями функции, ${}^7\mathbf{K}_{\nabla\!f}$ — ковариационная матрица между градиентами функции и значениями функции, а $\mathbf{K}_{\nabla\!\nabla}$ — ковариационная матрица между градиентами функций.

Эти ковариационные матрицы строятся с использованием ковариационных функций. Линейность нормальных распределений обеспечивает следующие зависимости между ковариационными функциями:

$$k_{ff}(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}, \mathbf{x}'), \tag{15.19}$$

$$k_{\nabla f}(\mathbf{x}, \mathbf{x}') = \nabla_{\mathbf{x}} k(\mathbf{x}, \mathbf{x}'), \tag{15.20}$$

$$k_{f\nabla}(\mathbf{x}, \mathbf{x}') = \nabla_{\mathbf{x}'} k(\mathbf{x}, \mathbf{x}') \tag{15.21}$$

$$k_{\nabla\nabla}(\mathbf{x}, \mathbf{x}') = \nabla_{\mathbf{x}} \nabla_{\mathbf{x}'} k(\mathbf{x}, \mathbf{x}') \tag{15.22}$$

В примере 15.2 эти отношения используются для получения ковариационных функций высшего порядка для конкретного ядра.

Пример 15.2. Вывод ковариационных функций для гауссовского процесса с градиентными наблюдениями

Рассмотрим квадрат экспоненциальной ковариационной функции

$$k_{ff}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}||\mathbf{x} - \mathbf{x}'||^2\right).$$

Мы можем использовать уравнения (15.19)—(15.22), чтобы получить другие ковариационные функции, необходимые для использования гауссовских процессов с градиентной информацией:

$$\begin{split} k_{\nabla f}\left(\mathbf{x},\,\mathbf{x}'\right) &= -\big(\mathbf{x}_i - \mathbf{x}_i'\big) \mathrm{exp}\bigg(-\frac{1}{2}\big\|\mathbf{x} - \mathbf{x}'\big\|^2\bigg), \\ k_{\nabla\nabla}\big(\mathbf{x},\,\mathbf{x}'\big)_{ij} &= -\Big(\big(i=j\big) - \big(\mathbf{x}_i - \mathbf{x}_i'\big)\Big(\mathbf{x}_j - \mathbf{x}_j'\big)\Big) \mathrm{exp}\bigg(-\frac{1}{2}\big\|\mathbf{x} - \mathbf{x}'\big\|^2\bigg). \end{split}$$

 $^{^7}$ Аналогично среднему значению функции, значение \mathbf{m}_∇ часто равно нулю.

Напоминаем, что логические выражения, такие как (i = j), возвращают единицу, если их значение — истина, и нуль, если ложь.

Прогнозирование может быть выполнено так же, как и при традиционном гауссовском процессе. Сначала мы строим совместное распределение

$$\begin{pmatrix} \hat{\mathbf{y}} \\ \mathbf{y} \\ \nabla \mathbf{y} \end{pmatrix} \sim N \begin{bmatrix} \mathbf{m}_{f} (X^{*}) \\ \mathbf{m}_{f} (X) \\ \mathbf{m}_{\nabla} (X) \end{bmatrix}, \begin{bmatrix} \mathbf{K}_{ff} (X^{*}, X^{*}) & \mathbf{K}_{ff} (X^{*}, X) & \mathbf{K}_{f\nabla} (X^{*}, X) \\ \mathbf{K}_{ff} (X^{*}, X) & \mathbf{K}_{ff} (X, X) & \mathbf{K}_{f\nabla} (X, X) \\ \mathbf{K}_{\nabla f} (X, X^{*}) & \mathbf{K}_{\nabla f} (X, X) & \mathbf{K}_{\nabla\nabla} (X, X) \end{bmatrix}. \quad (15.23)$$

Для гауссовского процесса над n-мерными расчетными векторами при заданных значениях функций и градиентов и l тестовых точках блоки ковариантной матрицы имеют следующие размерности:

$$l \times l \qquad l \times m \qquad l \times nm$$

$$m \times l \qquad m \times m \qquad m \times nm$$

$$nm \times l \qquad nm \times m \qquad nm \times nm$$

$$(15.24)$$

Построение такой ковариационой матрицы описано в примере 15.3.

Пример 15.3. Построение ковариационной матрицы для гауссовского процесса с градиентными наблюдениями

Предположим, что мы вычислили функцию и ее градиент в двух точках, $\mathbf{x}^{(1)}$ и $\mathbf{x}^{(2)}$, и хотим предсказать значение функции в точке $\hat{\mathbf{x}}$. Мы можем вывести совместное распределение по $\hat{\mathbf{y}}$, \mathbf{y} и $\nabla \mathbf{y}$, используя гауссовский процесс. Ковариационная матрица имеет вид:

$$\begin{bmatrix} k_{ff}(\hat{\mathbf{x}},\hat{\mathbf{x}}) & k_{ff}(\hat{\mathbf{x}},\hat{\mathbf{x}}^{(1)}) & k_{ff}(\hat{\mathbf{x}},\hat{\mathbf{x}}^{(2)}) & k_{f}_{\nabla}(\hat{\mathbf{x}},\hat{\mathbf{x}}^{(1)})_{1} & k_{f}_{\nabla}(\hat{\mathbf{x}},\hat{\mathbf{x}}^{(1)})_{2} & k_{f}_{\nabla}(\hat{\mathbf{x}},\hat{\mathbf{x}}^{(2)})_{1} & k_{f}_{\nabla}(\hat{\mathbf{x}},\hat{\mathbf{x}}^{(2)})_{2} \\ k_{ff}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}) & k_{ff}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(1)}) & k_{ff}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(2)}) & k_{f}_{\nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(1)})_{1} & k_{f}_{\nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(1)})_{2} & k_{f}_{\nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(2)})_{1} & k_{f}_{\nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(2)})_{2} \\ k_{ff}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}) & k_{ff}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(1)}) & k_{ff}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)}) & k_{f}_{\nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(1)})_{1} & k_{f}_{\nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{1} & k_{f}_{\nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{2} \\ k_{\nabla f}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}) & k_{\nabla f}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(1)}) & k_{\nabla f}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(2)}) & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(1)})_{11} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(1)})_{12} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(2)})_{11} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(2)})_{2} \\ k_{\nabla f}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}) & k_{\nabla f}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(1)}) & k_{\nabla f}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(2)})_{2} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(1)})_{11} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(1)})_{12} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(2)})_{11} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(1)},\hat{\mathbf{x}}^{(2)})_{21} \\ k_{\nabla f}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}) & k_{\nabla f}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(1)}) & k_{\nabla f}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{1} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(1)})_{12} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(1)})_{12} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{11} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{12} \\ k_{\nabla f}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}) & k_{\nabla f}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{1} & k_{\nabla f}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{1} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{11} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{12} \\ k_{\nabla f}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}) & k_{\nabla f}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{1} & k_{\nabla f}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{1} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x}}^{(2)})_{11} & k_{\nabla \nabla}(\hat{\mathbf{x}}^{(2)},\hat{\mathbf{x$$

Условное распределение подчиняется тем же гауссовским соотношениям, что и в уравнении (15.13):

$$\hat{\mathbf{y}}|\mathbf{y}, \nabla \mathbf{y} \sim N(\mathbf{\mu}_{\nabla}, \mathbf{\Sigma}_{\nabla}),$$
 (15.25)

где:

$$\mathbf{\mu}_{\nabla} = \mathbf{m}_{f} \left(X^{*} \right) + \begin{bmatrix} \mathbf{K}_{ff} \left(X, X^{*} \right) \\ \mathbf{K}_{\nabla f} \left(X, X^{*} \right) \end{bmatrix}^{T} \times \\ \times \begin{bmatrix} \mathbf{K}_{ff} \left(X, X \right) & \mathbf{K}_{f \nabla} \left(X, X \right) \\ \mathbf{K}_{\nabla f} \left(X, X \right) & \mathbf{K}_{\nabla \nabla} \left(X, X \right) \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{y} - \mathbf{m}_{f} \left(X \right) \\ \nabla \mathbf{y} - \mathbf{m}_{\nabla} \left(X \right) \end{bmatrix},$$

$$(15.26)$$

$$\Sigma_{\nabla} = \mathbf{K}_{ff} \left(X^*, X^* \right) - \begin{bmatrix} \mathbf{K}_{ff} \left(X, X^* \right) \\ \mathbf{K}_{\nabla f} \left(X, X^* \right) \end{bmatrix}^{\mathrm{T}} \times \begin{bmatrix} \mathbf{K}_{ff} \left(X, X \right) & \mathbf{K}_{f\nabla} \left(X, X \right) \\ \mathbf{K}_{\nabla f} \left(X, X \right) & \mathbf{K}_{f\nabla} \left(X, X \right) \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{K}_{ff} \left(X, X^* \right) \\ \mathbf{K}_{\nabla f} \left(X, X \right) & \mathbf{K}_{\nabla\nabla} \left(X, X \right) \end{bmatrix}.$$
(15.27)

На рис. 15.6 области, полученные при включении градиентных наблюдений, сравниваются с областями без градиентных наблюдений.

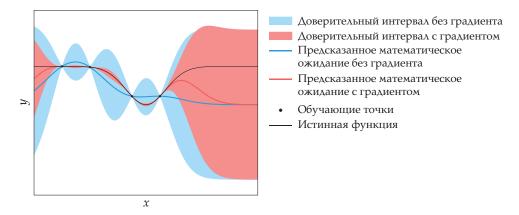


Рис. 15.6. Гауссовские процессы с информацией о градиенте и без нее с использованием квадратов экспоненциальных ядер. Включение информации о градиенте может значительно уменьшить доверительные интервалы

15.5. Информация о шуме

До сих пор мы предполагали, что целевая функция f является детерминированной. На практике, однако, оценки f могут включать в себя шум измерения, экспериментальную ошибку или числовое округление.

Мы можем смоделировать оценки шума как $y = f(\mathbf{x}) + z$, где f является детерминированной функцией, но z является гауссовским шумом с нулевым математи-

ческим ожиданием, т.е. $z \sim \mathcal{N}(0, \nu)$. Дисперсию шума можно настроить для контроля неопределенности.

$$\begin{bmatrix} \hat{\mathbf{y}} \\ \mathbf{y} \end{bmatrix} \sim \mathcal{N} \begin{bmatrix} \mathbf{m}(X^*) \\ \mathbf{m}(X^*) \end{bmatrix}, \begin{bmatrix} \mathbf{K}(X^*, X^*) & \mathbf{K}(X^*, X) \\ \mathbf{K}(X, X^*) & \mathbf{K}(X, X) + \nu \mathbf{I} \end{bmatrix}$$
(15.28)

с условным распределением:

$$\hat{\mathbf{y}}|\mathbf{y}, \ \nu \sim \mathcal{N}(\mathbf{p}^*, \ \Sigma^*),$$
 (15.29)

$$\mathbf{\mu}^* = \mathbf{m}(X^*) + \mathbf{K}(X^*, X)(\mathbf{K}(X, X) + \nu \mathbf{I})^{-1}(\mathbf{y} - \mathbf{m}(X)), \tag{15.30}$$

$$\Sigma^* = \mathbf{K}(X^*, X^*) - \mathbf{K}(X^*, X)(\mathbf{K}(X, X) + \nu \mathbf{I})^{-1} \mathbf{K}(X, X^*).$$
 (15.31)

Как показывают приведенные выше уравнения, учет гауссовского шума является простым, а последующее распределение может быть вычислено аналитически. Зашумленный гауссовский процесс показан на рис. 15.7. Прогнозирование для гауссовских процессов с зашумленными измерениями реализует алгоритм 15.4.

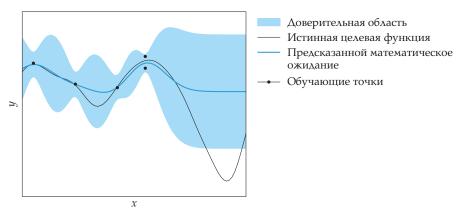


Рис. 15.7. Зашумленный гауссовский процесс с использованием квадрата экспоненциального ядра

Алгоритм 15.4. Метод получения предсказанных средних и стандартных отклонений по f при гауссовском процессе. Метод принимает гауссовский процесс **GP** и список точек **x_pred**, в которых можно оценить прогноз. Он возвращает среднее значение и дисперсию в каждой точке оценки

```
function predict(GP, X_pred)

m, k, \nu = GP.m, GP.k, GP.\nu

tmp = K(X_pred, GP.X, k) / (K(GP.X, GP.X, k) + <math>\nu * I)
```

 $^{^{8}}$ Для настройки дисперсии шума можно использовать методы, описанные в разделе 14.5.

```
\mu p = \mu (X\_pred, m) + tmp * (GP.y - \mu (GP.X, m))
S = K(X\_pred, X\_pred, k) - tmp * K(GP.X, X\_pred, k)
vp = diag(S) .+ eps() # значение ерѕ предотвращает вычислительные # проблемы return (<math>\mu p, vp)
end
```

15.6. Подгонка гауссовских процессов

Выбор ядра и параметров оказывает большое влияние на форму гауссовского процесса между расчетными точками. Ядра и их параметры могут быть выбраны с помощью перекрестной проверки, представленной в предыдущей главе. Вместо того чтобы минимизировать квадрат ошибки на тестовых данных, мы максимизируем вероятность данных. Иначе говоря, мы ищем параметры, которые максимизируют вероятность значений функции, $p(\mathbf{y}|X, \mathbf{\theta})$. Правдоподобность данных — это вероятность того, что наблюдаемые точки были взяты из модели. Эквивалентно мы можем максимизировать логарифмическую вероятность, которая обычно предпочтительнее, потому что умножение малых вероятностей при вычислении вероятности может привести к чрезвычайно малым значениям. При заданном наборе данных \mathcal{D} с n элементами логарифмическое правдоподобие определяется как

$$\log p(\mathbf{y}|X, \nu, \mathbf{\theta}) = -\frac{n}{2}\log 2\pi - \frac{1}{2}\log |K_{\mathbf{\theta}}(X, X) + \nu \mathbf{I}| - \frac{1}{2}(\mathbf{y} - \mathbf{m}_{\mathbf{\theta}}(X))^{\mathsf{T}} (K_{\mathbf{\theta}}(X, X) + \nu \mathbf{I})^{-1} (\mathbf{y} - \mathbf{m}_{\mathbf{\theta}}(X)),$$
(15.32)

где математическое ожидание и ковариационные функции параметризованы параметром $\boldsymbol{\theta}$.

Предположим, что математическое значение равно нулю, т.е. $\mathbf{m}_{\boldsymbol{\theta}}(X) = \mathbf{0}$ и параметр $\boldsymbol{\theta}$ относится только к параметрам для ковариационной функции гауссовского процесса. Мы можем прийти к оценке максимального правдоподобия путем градиентного подъема. Тогда градиент определяется как

$$\frac{\partial}{\partial \mathbf{\theta}_{j}} \log p\left(\mathbf{y} \middle| X, \mathbf{\theta}\right) = \frac{1}{2} \mathbf{y}^{\mathrm{T}} \mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \mathbf{\theta}_{j}} \mathbf{K}^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(\Sigma_{\mathbf{\theta}}^{-1} \frac{\partial \mathbf{K}}{\partial \mathbf{\theta}_{j}} \right), \tag{15.33}$$

где $\Sigma_{\theta} = \mathbf{K}_{\theta}(X, X) + v\mathbf{I}$. Выше мы использовали матричные производные отношения

 $^{^{9}}$ В качестве альтернативы можно максимизировать псевдослучайность, как показано в [126].

$$\frac{\partial \mathbf{K}^{-1}}{\partial \mathbf{\theta}_{i}} = -\mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \mathbf{\theta}_{i}} \mathbf{K}^{-1}, \tag{15.34}$$

$$\frac{\partial \log |\mathbf{K}|}{\partial \mathbf{\Theta}_{i}} = \operatorname{tr}\left(\mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \mathbf{\Theta}_{i}}\right), \tag{15.35}$$

где tr(A) обозначает *след* матрицы A, определенной как сумма элементов на главной диагонали.

15.7. Резюме

- Гауссовские процессы это распределения вероятностей по функциям.
- Выбор ядра влияет на гладкость функций, выбранных из гауссовского процесса.
- Многомерное нормальное распределение имеет аналитические условные и маргинальные распределения.
- Можно рассчитать математическое и стандартное отклонение прогноза целевой функции в конкретной расчетной точке с учетом ряда прошлых оценок.
- Можно включить информацию о градиенте, чтобы улучшить прогнозы значений целевой функции и ее градиента.
- Можно включить измерительный шум в гауссовский процесс.
- Можно подобрать параметры гауссовского процесса, используя максимальное правдоподобие.

15.8. Упражнения

Упражнение 15.1. Гауссовские процессы будут усложняться в процессе оптимизации по мере накопления большего количества выборок. Как это может стать преимуществом перед регрессионными моделями?

Упражнение 15.2. Как вычислительная сложность предсказания с гауссовским процессом увеличивается с числом точек данных *m*?

Упражнение 15.3. Рассмотрим функцию $f(x) = \sin x/(x^2 + 1)$ на отрезке [-5, 5]. Постройте 95%-ные доверительные границы для гауссовского процесса с информацией о производной, соответствующей оценкам в точках $\{-5, -2, 5, 0, 2, 5, 5\}$. Каково максимальное стандартное отклонение прогнозируемого распределения в диапазоне [-5, 5]? Сколько оценок функций, равномерно распределенных по

области, необходимо для того, чтобы гауссовский процесс без информации о производной достигал одинакового максимального прогнозирующего стандартного отклонения?

Предположим, что функции имеют нулевое математическое ожидание и наблюдения без шума, а также функции ковариации:

$$k_{ff}(x, x') = \exp\left(-\frac{1}{2}\|x - x'\|_{2}^{2}\right),$$

$$k_{\nabla f}(x, x') = (x' - x)\exp\left(-\frac{1}{2}\|x - x'\|_{2}^{2}\right),$$

$$k_{\nabla \nabla}(x, x') = \left((x - x')^{2} - 1\right)\exp\left(-\frac{1}{2}\|x - x'\|_{2}^{2}\right).$$

Упражнение 15.4. Выведите отношение

$$k_{f\nabla}(\mathbf{x}, \mathbf{x}')_i = \text{cov}\left(f(\mathbf{x}), \frac{\partial}{\partial x_i'}f(\mathbf{x}')\right) = \frac{\partial}{\partial x_i'}k_{ff}(\mathbf{x}, \mathbf{x}').$$

Упражнение 15.5. Предположим, что мы имеем многомерное нормальное распределение по двум переменным a и b. Покажите, что дисперсия условного распределения a при условии b не больше дисперсии маргинального распределения по a. Имеет ли это интуитивный смысл?

Упражнение 15.6. Допустим, что мы наблюдаем много выбросов, т.е. наблюдаем выборки, которые не попадают в доверительный интервал, заданный гауссовским процессом. Это означает, что выбранная нами вероятностная модель не подходит. Что можно сделать?

Упражнение 15.7. Рассмотрим выбор модели для пар оценки функций (x, y):

$$\{(1, 0), (2, -1), (3, -2), (4, 1), (5, 0)\}$$

Используйте скользящую перекрестную проверку, чтобы выбрать ядро, которое максимизирует вероятность предсказания отложенной пары с учетом гауссовского процесса, определенного на других парах в группе. Предположим, что функция имеет нулевое математическое ожидание и не имеет шума. Выберите одно из ядер:

$$\exp(-\|x-x'\|) \exp(-\|x-x'\|^2) (1+\|x-x'\|)^{-1} (1+\|x-x'\|^2)^{-1} (1+\|x-x'\|)^{-2}.$$