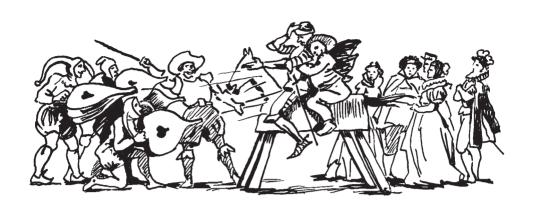
Перельман, Яков Исидорович.


П27 Занимательная физика и механика / Я. Перельман; Худ. Ю. Станишевский. — Москва: Издательство АСТ, 2019. — 237, [3] с.: ил. — (Простая наука для детей).

ISBN 978-5-17-098897-6.

Сколько сил действует на движущийся предмет? Ответить не сложно, если ты уже начал изучать физику и механику — один из ее разделов, посвященных изучению движения тел и их взаимодействия. Из этой книги ты узнаешь, что такое противодействие, как вычислить тягу, какой материал самый крепкий, что такое инерция, как измерить скорость дождя, почему деревья не растут до неба... и многое другое! Увлекательные задачи Якова Исидоровича Перельмана сделают науку простой и понятной.

Для среднего школьного возраста.

УДК 51 ББК 22.1я92

Глава первая ОСНОВНЫЕ ЗАКОНЫ МЕХАНИКИ

• Задача о двух яйцах

Держа в руках яйцо, вы ударяете по нему другим (рис. 1). Оба яйца одинаково прочны и сталкиваются одинаковыми частями. Которое из них должно разбиться: ударяемое или ударяющее?

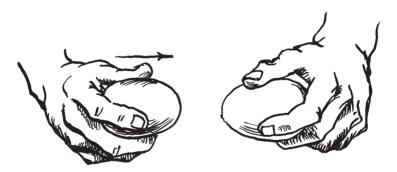


Рис. 1. Которое яйцо сломается?

Вопрос поставлен был несколько лет назад американским журналом «Наука и изобретения».

Журнал утверждал, что, согласно опыту, разбивается чаще «то яйцо, которое *двигалось*», другими словами — яйцо *ударяющее*.

«Скорлупа яйца, — пояснялось в журнале, — имеет кривую форму, причем давление, приложенное при ударе к неподвижному яйцу, действует на его скорлупу снаружи; но известно, что, подобно всякому своду, яичная скорлупа хорошо противостоит давлению извне. Иначе обстоит дело, когда усилие приложено к яйцу движущемуся. В этом случае движущееся содержимое яйца напирает в момент удара на скорлупу изнутри. Свод противостоит такому давлению гораздо слабее, чем напору снаружи, и — проламывается».

Когда та же задача была предложена в распространенной ленинградской газете, решения поступили крайне разнообразные.

Одни из решающих доказывали, что разбиться должно непременно ударяющее яйцо; другие что именно оно-то и уцелеет. Доводы казались одинаково правдоподобными, и тем не менее оба утверждения в корне ошибочны! Установить рассуждением, которое из соударяющихся яиц должно разбиться, вообще невозможно, потому что между яйцами ударяющим и ударяемым различия не существует. Нельзя ссылаться на то, что ударяющее яйцо движется, а ударяемое неподвижно. Неподвижно — по отношению к чему? Если к земному шару, то ведь известно, что планета наша сама перемещается среди звезд, совершая десяток разнообразных движений; все эти движения «ударяемое» яйцо разделяет так же, как и «ударяющее», и никто не скажет, которое из них движется среди звезд быстрее. Чтобы предсказать судьбу яиц по признакам движения и покоя, понадобилось бы переворошить всю астрономию и определить движение каждого из соударяющихся яиц относительно неподвижных звезд. Да и это не помогло бы, потому что отдельные видимые звезды тоже движутся, и вся их совокупность, Млечный Путь, перемещается по отношению к иным звездным вселенным.

Яичная задача, как видите, увлекла нас в бездны мироздания и все же не приблизилась к разрешению. Впрочем, нет, — приблизилась, если звездная экскурсия помогла нам понять ту важную истину, что движение тела без указания другого тела, к которому это движение относится, есть попросту бессмыслица. Одинокое тело, само по себе взятое, двигаться не может; могут перемещаться по крайней мере два тела — взаимно сближаться или взаимно удаляться. Оба соударяющихся яйца находятся в одинаковом состоянии движения: они взаимно сближаются, — вот все, что мы можем сказать об их движении. Результат столкновения не зависит от того, какое из них пожелаем мы считать неподвижным и какое движущимся.

Триста лет назад впервые провозглашена была Галилеем относительность равномерного движения и покоя. Этот «принцип относительности классической механики» не следует смешивать с «принципом относительности Эйнштейна», выдвинутым только в начале этого столетия и представляющим дальнейшее развитие первого принципа.

• Путешествие на деревянном коне

Из сказанного следует, что состояние равномерного прямолинейного движения неотличимо от состояния неподвижности при условии обратного равномерного и прямолинейного движения окружающей обстановки. Сказать: «тело движется с постоянной скоростью» и «тело находится в покое, но все окружающее равномерно движется в обратную сторону» — значит утверждать одно и то же. Строго говоря, мы не должны говорить ни так, ни этак, а должны говорить, что тело и обстановка движутся одно относительно другого. Мысль эта еще и в наши дни усвоена далеко не всеми, кто имеет дело с механикой и физикой. А между тем она не чужда была уже автору «Дон-Кихота», жившему три столетия назад и не читавшему Галилея. Ею проникнута одна из забавных сцен произведения Сервантеса — описание путешествия прославленного рыцаря и его оруженосца на деревянном коне.

«— Садитесь на круп лошади, — объяснили Дон-Кихоту. — Требуется лишь одно: повернуть втулку, вделанную у коня на шее, и он унесет вас по воздуху туда, где ожидает вас Маламбумо. Но чтобы высота не вызвала головокружения, надо ехать с завязанными глазами.

Обоим завязали глаза, и Дон-Кихот дотронулся до втулки».

Окружающие стали уверять рыцаря, что он уже несется по воздуху «быстрее стрелы».

- «— Готов клясться, заявил Дон-Кихот оруженосцу, что во всю жизнь мою не ездил я на коне с более спокойной поступью. Все идет, как должно идти, и ветер дует.
- Это верно, сказал Санчо, я чувствую такой свежий воздух, точно на меня дуют из тысячи мехов.

Так на самом деле и было, потому что на них дули из нескольких больших мехов».

Деревянный конь Сервантеса — прообраз многочисленных аттракционов, придуманных в наше время для развлечения публики на выставках и в парках. То и другое основано на полной невозможности отличить по механическому эффекту состояние покоя от состояния равномерного движения.

• Здравый смысл и механика

Многие привыкли противополагать покой движению, как небо — земле и огонь — воде. Это не мешает им, впрочем, устраиваться в вагоне на ночлег, ни мало не заботясь о том, стоит ли поезд, или мчится. Но в теории те же люди зачастую убежденно оспаривают право считать мчащийся поезд неподвижным, а рельсы, землю под ними и всю окрестность — движущимися в противоположном направлении.

«Допускается ли такое толкование здравым смыслом машиниста? — спрашивает Эйнштейн, излагая эту точку зрения. — Машинист возразит,

что он топит и смазывает не окрестность, а паровоз; следовательно, на паровозе должен сказаться и результат его работы, т. е. движение».

Довод представляется на первый взгляд очень сильным, едва ли не решающим. Однако вообразите, что рельсовый путь проложен вдоль экватора и поезд мчится на запад, против направления вращения земного шара. Тогда окрестность будет бежать навстречу поезду, и топливо будет расходоваться лишь на то, чтобы мешать паровозу быть увлекаемым назад, — вернее, чтобы помогать ему хоть немного отставать от движения окрестности на восток. Пожелай машинист удержать поезд совсем от участия во вращении Земли, он должен был бы топить и смазывать паровоз так, как нужно для скорости примерно две тысячи километров в час.

Впрочем, он бы и не нашел паровоза, подходящего для этой цели: только реактивные самолеты смогут развивать такую скорость.

Пока движение поезда остается вполне равномерным, собственно, нет возможности определить, что именно находится в движении и что в покое: поезд или окрестность. Устройство материального мира таково, что всегда во всякий данный момент исключает возможность абсолютного решения вопроса о наличии равномерного движения или покоя и оставляет место только для изучения равномерного движения тел относительно друг друга, так как участие наблюдателя в равномерном движении не отражается на наблюдаемых явлениях и их законах.

• Поединок на корабле

Можно представить себе такую обстановку, к которой иные, пожалуй, затруднятся практически применить принцип относительности. Вообразите, например, на палубе движущегося судна двух стрелков, направивших друг в друга свое оружие (рис. 2). Поставлены ли оба противника в строго одинаковые условия? Не вправе ли стрелок, стоящий спиной к носу корабля, жаловаться на то, что пущенная им пуля летит медленнее, чем пуля противника?

Конечно, по отношению к поверхности моря пуля, пущенная против движения корабля, летит медленнее, чем на неподвижном судне, а пуля, направленная к носу, летит быстрее. Но это нисколько не нарушает условий поединка: пуля,

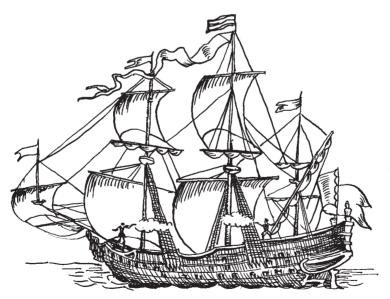


Рис. 2. Чья пуля раньше достигнет противника?

направленная к корме, летит к мишени, которая движется ей навстречу, так что при равномерном движении судна недостаток скорости пули как раз восполняется встречной скоростью мишени; пуля же, направленная к носу, догоняет свою мишень, которая удаляется от пули со скоростью, равной избытку скорости пули.

В конечном итоге обе *пули по отношению к своим мишеням* движутся совершенно так же, как и на корабле неподвижном.

Не мешает прибавить, что все сказанное относится только к такому судну, которое идет по прямой линии и притом с постоянной скоростью.

Здесь уместно будет привести отрывок из той книги Галилея, где был впервые высказан классический принцип относительности (книга эта едва не привела ее автора на костер инквизиции).

«Заключите себя с приятелем в просторное помещение под палубой большого корабля. Если движение корабля будет равномерным, то вы ни по одному действию не в состоянии будете судить, движется ли корабль, или стоит на месте. Прыгая, вы будете покрывать по полу те же самые расстояния, как и на неподвижном корабле. Вы не сделаете вследствие быстрого движения корабля больших прыжков к корме, чем к носу корабля, хотя, пока вы находитесь в воздухе, пол под вами бежит к части, противоположной прыжку. Бросая вещь товарищу, вам не нужно с большей силой кидать ее от кормы к носу, чем наоборот... Мухи будут летать во все стороны, не держась преимущественно той стороны, которая ближе к корме» и т. д.

Теперь понятна та форма, в которой обычно высказывается классический принцип относительности: «характер движения, совершающегося в какой-либо системе, не зависит от того, находится ли система в покое или перемещается прямолинейно и равномерно относительно земной поверхности».

• Аэродинамическая труба

На практике иной раз оказывается чрезвычайно полезным заменять движение покоем и покой движением, опираясь на классический принцип относительности. Чтобы изучить, как действует на самолет или на автомобиль сопротивление воздуха, сквозь который они движутся, обычно исследуют «обращенное» явление: действие движущегося потока воздуха на покоящийся самолет.

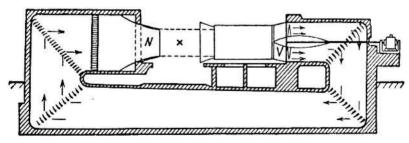


Рис. 3. Продольный разрез через аэродинамическую трубу. Модель крыла или самолета подвешивается в рабочем пространстве, отмеченном крестиком (×). Воздух, засасываемый вентилятором V, движется в направлении, указанном стрелками, выбрасывается в рабочее пространство через суживающийся насадок и затем опять засасывается в трубу.

В лаборатории устанавливают широкую аэродинамическую трубу (рис. 3), устраивают в ней ток воздуха и изучают его действие на неподвижно подвешенную модель аэроплана или автомобиля. Добытые результаты с успехом прилагают к практике, хотя в действительности явление протекает как раз наоборот: воздух неподвижен, а аэроплан или автомобиль прорезают его с большой скоростью.

В настоящее время существуют аэродинамические трубы настолько большого размера, что в них помещается не уменьшенная модель, а корпус самолета с пропеллером или автомобиль средней величины. Скорость воздуха в трубе можно довести до скорости звука.

• На полном ходу поезда

Другой пример плодотворного применения классического принципа относительности возьмем из железнодорожной практики. Тендер иногда пополняется водой на полном ходу поезда.

Достигается это остроумным «обращением» одного общеизвестного механического явления, а именно: если в поток воды погрузить отвесно трубку, нижний конец которой загнут против течения (рис. 4), то текущая вода проникает в эту так называемую «трубку Пито» и устанавливается в ней выше уровня реки на определенную величину H, зависящую от скорости течения. Железнодорожные инженеры «обратили» это явление: они двигают загнутую трубку в *стоячей* воде, — и вода

Рис. 4. Как паровозы на полном ходу набирают воду. Между рельсами устроен длинный водоем, в который погружается из тендера труба. Вверху налево — трубка Пито. При погружении ее в текущую воду уровень в трубе поднимается выше, чем в водоеме. Вверху направо — применение трубки Пито для набора воды в тендер движущегося поезда.

в трубке поднимается выше уровня водоема. Движение заменяют покоем, а покой движением.

На станции, где тендер паровоза должен, не останавливаясь, запастись водой, устраивают между рельсами длинный водоем в виде канавы (рис. 4). С тендера спускают изогнутую трубу, обращенную отверстием в сторону движения. Вода, поднимаясь в трубе, подается в тендер быстро мчащегося поезда (рис. 4, вверху справа).

Как высоко может быть поднята вода этим оригинальным способом? По законам того отдела

механики, который носит название гидромеханики и занимается движением жидкостей, вода в трубке Пито должна подняться на такую же высоту, на какую взлетело бы вверх тело, подброшенное отвесно со скоростью течения воды; если пренебречь потерей энергии на трение, завихрения и т. д., то эта высота *H* определяется формулой

$$H=\frac{V^2}{2q},$$

где V — скорость воды, а g — ускорение силы тяжести, равное $9.8~m/c^2$. В нашем случае скорость воды по отношению к трубе равна скорости поезда; взяв скромную скорость $36~\kappa m/чac$, имеем V = 10~m/c; следовательно, высота поднятия воды

$$H = \frac{V^2}{2 \cdot 9.8} = \frac{100}{2 \cdot 9.8} \approx 5 \text{ M}.$$

Ясно, что каковы бы ни были потери, вызванные трением и другими, не принятыми во внимание обстоятельствами, высота поднятия достаточна для успешного наполнения тендера.

• Как надо понимать закон инерции

Теперь, после того как мы так подробно побеседовали об относительности движения, необходи-

¹ Здесь, как и в дальнейшем изложении, км/час обозначает километр в час, м/с соответственно обозначает метр в секунду, а м/с² — единицу ускорения, т. е. ускорение такого равнопеременного движения, при котором скорость изменяется на 1 м/с за 1 секунду.

мо сказать несколько слов о тех причинах, которые вызывают движение, — о силах. Прежде всего нужно указать на закон независимости действия сил. Он формулируется так: действие силы на тело не зависит от того, находится ли тело в покое или движется по инерции, либо под влиянием других сил.

Это — следствие так называемого «второго» из тех трех законов, которые положены Ньютоном в основу классической механики. Первый — закон инерции; третий — закон равенства действия и противодействия.

Второму закону Ньютона будет посвящена вся следующая глава, поэтому здесь мы скажем о нем всего лишь несколько слов. Смысл этого закона состоит в том, что изменение скорости, мерой которого служит ускорение, пропорционально действующей силе и имеет одинаковое с ней направление. Этот закон можно выразить формулой

$$F = m \cdot a$$
,

где F — сила, действующая на тело; m — его масса и a — ускорение тела. Из трех величин, входящих в эту формулу, труднее всего понять, что такое масса. Нередко смешивают ее с весом, но в действительности масса и вес — совсем не одно и то же. Массы тел можно сравнивать по тем ускорениям, которые они получают под влиянием одной и той же силы. Как видно из только что написанной формулы, масса при этом должна быть тем больше, чем меньше ускорение, приобретенное телом под влиянием этой силы.