Содержание

Предисловие	5
Глава 1. Теория вероятностей и математическая статистика в MS Excel	7
§1. Встроенные функции дискретных распределений	
§2. Макросы для дискретных распределений	
§3. Встроенные функции непрерывных распределений	23
§4. Инструмент Гистограмма	
§5. Инструмент Описательная статистика	34
§6. Встроенные средства корреляционного анализа	
§7. Макрос Correlation	
§8. Тесты надстройки Анализ данных	47
Глава 2. Непараметрические критерии	
для независимых выборок	
§1. Критерий Колмогорова-Смирнова	
§2. Критерий Катценбайссера-Хакли	
§3. Критерий Вилкоксона	
§4. Критерий Манна-Уитни	
§5. Критерий серий Вальда-Вольфовитца	
§6. Сериальный критерий Рамачандрана-Ранганатана	94
Глава 3. Непараметрические критерии для пар	
наблюдений	
§1. Критерий знаков	
§2. Критерий Фишера	
§3. Знаковый критерий Вилкоксона	
§4. Модификации критерия Вилкоксона	
§5. Критерий Спирмена	
§6. Критерий Кендалла	
§7. Критерий Ван дер Вардена §8. Критерий Ширахате	
90. критерии ширахате	130
Глава 4. Непараметрические критерии	
для таблиц сопряженности	
$\S1$. Четырехклеточный χ^2 критерий	142
§2. Общий случай χ² критерия	
§3. Точный критерий Фишера	153

4	Содержание
---	------------

Литература	
§7. Критерий Ле Роя	167
§6. Биномиальные критерии	163
§5. Критерий Макнимары	159
§4. G-критерий Вулфа	156

Предисловие

Непараметрические статистика — статистические критерии проверки гипотез, не связанных с законами распределений генеральных сово-купностей и их параметрами. Непараметрическая статистика находит широкое применение в исследованиях по психологии, биологии, экономике и многим другим областям.

В макросах папки VBA_tests, которым, фактически, посвящена данная книга, статистические критерии запрограммированы так, как они изложены в большей части литературы по непараметрической статистике ([10], [12], [13] и др.), то есть, в основном, с помощью критических точек, соответствующих заданному уровню значимости α.

В статистических пакетах STATISTICA, SPSS, XLSTAT, как известно ([4], [8], [15]), подход другой ([22], стр. 37), опирающийся на значение p-level, который у не знакомых с ним пользователей вызывает определенные трудности. Поэтому данные макросы, не требующие специальной установки, одного из самых доступных, и популярных, пакетов обработки числовых данных, каким является MS Excel, несомненно, будут полезны. Кроме того, папка VBA_tests содержит макросы таких уникальных критериев, каких нет в статистических пакетах:

- Катценбайссера-Хакли;
- Рамачандрана-Ранганатана;
- Ширахате и др.

Естественно, макросы неоднократно тестировались, результаты перепроверялись, в том числе, когда это было возможно, в статистических пакетах.

В книгу вошли основные сведения по MS Excel и классическим методам непараметрической статистики, применяемым к независимым выборкам, парным наблюдениям и таблицам сопряженности, реализующие эти методы программы VBA и технологии решения типовых задач в MS Excel. Данные технологии представлены, как полезными в учебных целях пошаговыми решениями (без применения макросов), так и автоматическими, когда задача решается одним макросом, возвращающим:

- значение статистики;
- критерий принятия основной гипотезы;
- вывод о том, какую гипотезу следует принять.

Таблицы критических точек статистик, не поддерживаемых в MS Excel, введены как процедуры-функции.

6 Предисловие

Материал изложен просто и доступно, большое число задач и рисунков позволяет понять рассматриваемые технологии, вообще говоря, не включая компьютер. Условия задач, в основном, взяты из наиболее популярных сборников задач, учебных пособий и монографий. Включенные в книгу программы VBA должны подсказать пользователям MS Excel, как самостоятельно запрограммировать нужный критерий, а не охваченных информационными математическими технологиями статистических критериев – необозримое множество.

Под стандартным применением макроса в книге, следуя [18], понимается:

- 1) вызов макроса (рабочей книги, содержащей макрос);
- 2) построчный ввод данных, начиная с ячейки А1;
- 3) выделение диапазона данных;
- 4) запуск макроса на исполнение (**Сервис** \Rightarrow **Макрос** \Rightarrow **Макросы** \Rightarrow **Имя** \Rightarrow **Выполнить**).

Ссылка для скачивания макросов непараметрической статистики, содержащихся в папке $VBA_tests: \underline{http://www.oasdv.narod.ru}.$

Макросы, которых более 30, поддерживаются в MS Excel 2007 и 2010.

Книга ориентирована на студентов вузов, изучающих статистические методы, но будет полезна и более широкому кругу пользователей MS Excel.

Глава 1

Теория вероятностей и математическая статистика в MS Excel

§1.	Встроенные функции
	дискретных
	распределений9
§2.	Макросы для дискретных
	распределений 18
§3.	Встроенные функции
	непрерывных
	распределений 23
§4.	Инструмент
	Гистограмма 26
§5.	Инструмент
	Описательная
	статистика 34
§6.	Встроенные средства
	корреляционного
	анализа38
§7.	Макрос Correlation 45
§8.	Тесты надстройки
	Анализ данных 47

Теория вероятностей и математическая статистика поддерживаются в MS Excel встроенными функциями (таблица 1.1) и надстройкой (инструментами) **Анализ данных** (рис. 1.1, 1.2).

Таблица 1.1

· · · · · · · · · · · · · · · · · ·			
FРАСΠ	MAKC	СРЗНАЧ	
FРАСПОБР .	MAKCA	СРЗНАЧА	
ZTECT	МЕДИАНА	СРОТКЛ	
БЕТАОБР	МИН	СТАНДОТКЛОН	
БЕТАРАСП	МИНА	СТАНДОТКЛОНА	
БИНОМРАСП	МОДА	СТАНДОТКЛОНП	
ВЕЙБУЛЛ	НАИБОЛЬШИЙ	СТАНДОТКЛОНПА	
ВЕРОЯТНОСТЬ	НАИМЕНЬШИЙ	СТОШҮХ	
ГАММАОБР	НАКЛОН	СТЬЮДРАСП	
ГАММАРАСП	НОРМАЛИЗАЦИЯ	СТЬЮДРАСПОБР	
ГАММАНЛОГ	НОРМОБР	СЧЕТ	
гипергеомет	НОРМРАСП	СЧЕТЕСЛИ	
дисп	НОРМСТОБР	СЧЕТЗ	
диспа нормстрасп		СЧИТАТЬПУСТОТЫ	
ДИСПР ОТРБИНОМРАСП		ТЕНДЕНЦИЯ	
ДИСПРА	ОТРЕЗОК	TTECT	
ДОВЕРИТ	ПЕРЕСТ УРЕЗСРЕДНЕЕ		
КВАДРОТКЛ	ТКЛ ПЕРСЕНТИЛЬ ФИШЕР		
КВАРТИЛЬ	ПИРСОН	ФИШЕРОБР	
КВПИРСОН	ПРЕДСКАЗ	ФТЕСТ	
KOBAP	ПРОЦЕНТРАНГ	ХИ2ОБР	
КОРРЕЛ	ПУАССОН	хи2РАСП	
КРИТБИНОМ	РАНГ	хи2тест	
ЛГРФПРИБЛ	POCT	ЧАСТОТА	
ЛИНЕЙН	СКОС	ЭКСПРАСП	
ЛОГНОРМОБР	СРГАРМ	ЭКСЦЕСС	
ЛОГНОРМРАСП	СРГЕОМ		

Меню встроенных функций (Мастер функций) открывается кнопкой f(x), по каждой из них в MS Excel можно получить подробную справку. Поэтому специально перечислять их назначения, как и значения параметров, нет необходимости, тем более что многие из них в дальнейшем будут применяться в конкретных задачах.

Пакет **Анализ данных**, если его нет в меню **Сервис**, загружается командами **Сервис** ⇒ **Надстройки**, после чего надо поставить галочку в поле **Анализ данных** и подтвердить **ОК**.

Щелчок по опции **Анализ данных** меню **Сервис** открывает список инструментов:

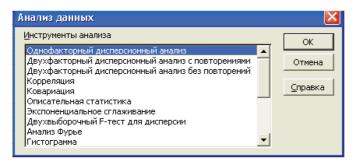
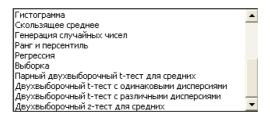



Рис. 1.1

Продолжение списка инструментов на рис. 1.2.

Puc. 1.2

§1. Встроенные функции дискретных распределений

Встроенные функции комбинаторики ПЕРЕСТ, ЧИСЛКОМБ и ФАКТР, причем первая входит в статистические функции, а вторая и третья — в математические.

ПЕРЕСТ(n; m) — возвращает число выборок из n элементов по m, каждая из которых отличается от остальных или составом элементов, или их порядком.

Пусть требуется подсчитать, сколько вариантов шахматных команд по три игрока (1-я, 2-я, 3-я доски) можно составить из четырех игроков. Открываем диалоговое окно ПЕРЕСТ, вводим данные и получаем результат:

Аргументы функции	×
ПЕРЕСТ	
Число	4 = 4
Число_выбранных	3 3 = 3
Возвращает количество перестановок за, объектов.	данного числа объектов, которые выбираются из общего числа
Число_выбранных	целое число, задающее количество объектов в каждой перестановке.
Справка по этой функции Значен	ие:24 ОК Отмена

Рис. 1.3

Команда ОК вставляет результат на рабочий лист.

Если m=n, то встроенная функция ПЕРЕСТ возвращает n!, так же как встроенная функция ФАКТР.

ЧИСЛКОМБ(n; m) — возвращает число сочетаний C_n^m , то есть число выборок из n элементов по m, каждая из которых отличается от остальных хотя бы одним элементом.

Пусть требуется подсчитать, сколько вариантов различных команд по пляжному волейболу (в команде 2 человека) можно составить из пяти человек. Тогда, используя встроенную функцию ЧИСЛ-КОМБ, получаем 10:

Аргументы функции	×				
-числкомь					
Число	5 = 5				
Число_выбранных	2 = 2				
Возвращает количество комбинаций для заданного числа элементов.					
Число_выбранных	число элементов в каждой комбинации.				
Справка по этой функции Значені	ие:10 ОК Отмена				

Рис. 1.4

Встроенная функция БИНОМРАСП(m, n, p, ЛОЖЬ) возвращает значение, получаемое по формуле Бернулли

$$P_n(m) = C_n^m p^m (1-p)^{n-m},$$

встроенная функция ПУАССОН(m, λ , ЛОЖЬ) — значение, получаемое по формуле Пуассона

$$P_n(m) = \frac{\lambda^m}{m!} e^{-\lambda}, \quad \lambda = np.$$

При замене значения ЛОЖЬ (0) на значение ИСТИНА (1) они возвращают значения интегральных функций распределений.

Пусть дискретная случайная величина X имеет, например, биномиальный закон распределения с параметрами n=5, p=0.75. Тогда ее возможные значения 0, 1, 2, 3, 4, 5. Вычислим вероятности, с которыми она их принимает, составим закон распределения, сделаем проверку и построим многоугольник распределения.

- 1. В диапазон A1:F1 вводим значения X.
- 2. Выделяем ячейку A2, открываем диалоговое окно БИНОМ-РАСП и заполняем поля (рис. 1.5).



Рис. 1.5

- 3. Команда **ОК** вставляет в ячейку A2 формулу =БИНОМ-РАСП(A1;5;0,75;0).
- 4. Методом «протаскивания» маркера заполнения копируем ее в остальные ячейки диапазона A2:F2.
- 5. Выделяем диапазон A2:F2 и, щелчком по кнопке ∑, убеждаемся в том, что сумма равна 1, то есть в диапазоне A1:F2 получен, действительно, закон распределения дискретной случайной величины:

		A2	★ =БИНОМРАСП(А1;5;0,75;0)					
		Α	В	С	D	Е	F	G
1	1	0	1	2	3	4	5	
2	2	0,000977	0,014648	0,087891	0,263672	0,395508	0,237305	1

Рис. 1.6

6. В графическом редакторе **Мастер диаграмм**, выделяя диапазон A1:F2, строим точечную диаграмму:

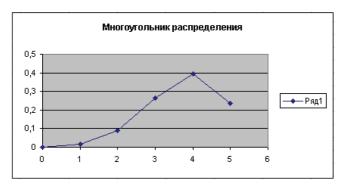


Рис. 1.7

Вычисление значения интегральной функции данного биномиального распределения при x=5 дает F(5)=1 (рис. 1.8), что показывает, что в MS Excel интегральная функция распределения $F(x)=P(X \le x)$, хотя принято $F(x)=P(X \le x)$ [6].

Аргуме нты функции	
БИНОМРАСП	
Число_успехов	5 = 5
Число_испытаний	5 = 5
Вероятность_успеха	0,75
Интегральная	1 ЕЩ = ИСТИНА
Интегральная	логическое значение, определяющее вид функции: интегральная функция распределения (ИСТИНА) или весовая функция распределения (ЛОЖЬ).
Справка по этой функции Значен	ие:1 ОК Отмена

Рис. 1.8

График интегральной функции рассматриваемого распределения на отрезке [0, 6] с шагом 0,2, построенный с помощью встроенной функции БИНОМРАСП и графического редактора **Мастер диаграмм**, показан на рис. 1.9.

Рис. 1.9

Задача 1.1. Дискретная случайная величина X задана законом распределения

 x_i 3 4 7 10 p_i 0,2 0,3 0,1 0,4

Найти интегральную функцию распределения и построить график.

Технология решения.

- 1. Вводим в ячейку A1 значение 2,8 и задаем в первом столбце арифметическую прогрессию с шагом 0,2, предельное значение 11.
- 2. В ячейку В1 вводим формулу интегральной функции заданного распределения

- и копируем ее в ячейки столбца В, соответствующие заполненным ячейкам столбца А.
- 3. Выделяя полученную таблицу и применяя редактор **Мастер диаграмм**, приходим к графику:

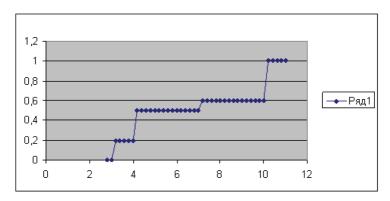


Рис. 1.10

Ответ:

$$F(x) = \begin{cases} 0, & x \le 3 \\ 0.2, & 3 < x \le 4 \\ 0.5, & 4 < x \le 7 \\ 0.6, & 7 < x \le 10 \\ 1, & x > 10 \end{cases}$$

Найдем математическое ожидание $M[X] = \sum_{i=1}^{n} x_i p_i$ дискретной случайной величины X, заданной в задаче 1.1.

- 1. Введем в диапазон А1:D2 закон распределения (рис. 1.11).
- 2. В ячейке A3 запишем формулу = A1*A2 и скопируем ее маркером заполнения в остальные ячейки диапазона A3:D3.
- 3. Выделяя диапазон А3:D3, и делая щелчок по кнопке Σ панели инструментов, получаем в ячейке E3 искомое значение, то есть M[X] = 6.5:

	А	В	С	D	Е
1	3	4	7	10	
2	0,2	0,3	0,1	0,4	
3	0,6	1,2	0,7	4	6,5

Рис. 1.11

Найдем дисперсию $D[X] = \sum_{i=1}^n (x_i - M[X])^2 \cdot p_i$ случайной величины задачи 1.1. Продолжаем вычисления.

- 4. В ячейку A4 вводим формулу =(A1-\$E\$3)^2*A2 и копируем ее маркером заполнения в остальные ячейки диапазона A4:D4.
- 5. Выделяя диапазон A4:D4, и применяя кнопку Σ , получаем в ячейке E4 значение дисперсии, то есть D[X] = 9,25:

	Α	В	С	D	Е
1	3	4	7	10	
2	0,2	0,3	0,1	0,4	
3	0,6	1,2	0,7	4	6,5
4	2,45	1,875	0,025	4,9	9,25

Рис. 1.12

Сделаем проверку полученного результата, применяя формулу: $D[X] = M[X^2] - M[X]^2$.

Продолжаем вычисления.

- 6. В ячейку А5 вводим формулу = A1^2*A2 и копируем ее в остальные ячейки диапазона A5:D5.
- 7. Выделяя диапазон А5:D5, и применяя кнопку Σ , получаем $M[X^2] = 51,5$ (ячейка Е5).
- 8. В ячейку F5 вводим формулу = E5-E3^2 Она возвращает значение, совпадающее с полученным по первой формуле в ячейке E4:

	Α	В	С	D	Е	F
1	3	4	7	10		
2	0,2	0,3	0,1	0,4		
3	0,6	1,2	0,7	4	6,5	
4	2,45	1,875	0,025	4,9	9,25	
5	1,8	4,8	4,9	40	51,5	9,25

Puc. 1.13

По данным диапазона A1:D2 (рис. 1.11) значение M[X] можно получить также функцией СУММПРОИЗВ. Достаточно открыть ее диалоговое окно и ввести ссылки на диапазоны A1:D1, A2:D2 (рис. 1.14).

Задача 1.2. Магазин получил 1000 бутылок минеральной воды. Вероятность того, что при перевозке бутылка окажется разбитой, равна 0,005. Найти вероятности того, что магазин получит разбитых бутылок: а) ровно три; б) менее трех; в) более трех; г) хотя бы одну.

Технология решения. Так как n=1000 велико, а p=0.003 мало, то применима формула Пуассона, в которой $\lambda = np = 5$. Найдем по ней вероятности, с которыми принимаются значения 0, 1, 2, 3.

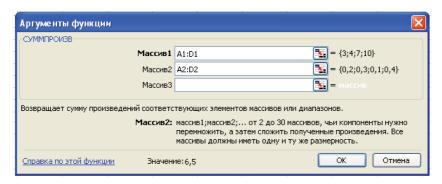


Рис. 1.14

- 1. Вводим их в диапазон А1:А3 (рис. 1.16).
- 2. Выделяем ячейку В1, открываем диалоговое окно ПУАССОН и вводим данные, подтверждая командой ОК (рис. 1.15).

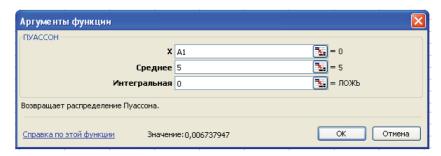


Рис. 1.15

- 3. Копируем формулу ячейки B1 в ячейки B2:B4. Ответ на первый вопрос находится в ячейке B4.
- 4. Формула = B1+B2+B3, которую запишем в C1, дает ответ на второй вопрос.
- 5. Кнопкой **Σ** находим в ячейке B5 сумму значений диапазона B1:B4. Формулой =1-B5 ячейки C2 получаем ответ на третий вопрос.
- 6. Последняя величина находится по формуле = 1-B1, ее помещаем в ячейку С3. В результате фрагмент листа Excel с решением задачи принимает вид:

А	В	С	D
0	0,006738	0,124652	
1	0,03369	0,734974	
2	0,084224	0,993262	
	0,265026		
		1 0,03369 2 0,084224 3 0,140374	A B C 0 0,006738 0,124652 1 0,03369 0,734974 2 0,084224 0,993262 3 0,140374 0,265026

Рис. 1.16

Ответ: а) В4; б) С1; в) С2; г) С3.

Задача 1.3. В партии из 10 деталей имеется 8 стандартных. Наудачу отобраны две детали. Составить закон распределения случайной дискретной величины X – числа стандартных деталей среди отобранных.

Технология решения. Возможные значения случайной величины X: 0, 1, 2. Закон распределения – гипергеометрический.

- 1. В диапазона А1:С1 вводим 0, 1, 2 соответственно.
- 2. Выделяем ячейку A2, открываем диалоговое окно ГИПЕР-ГЕОМЕТ и вводим данные, подтверждая \mathbf{OK} .

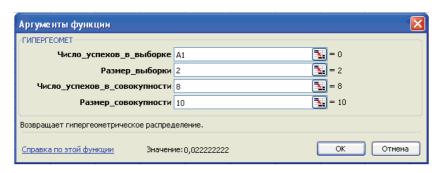


Рис. 1.17

3. Копируем формулу ячейки A2 в ячейки B2:C2 и переходим в диапазоне A2:C2 к формату «Дробный», с дробями до двух цифр, что приводит к следующему закону распределения вероятностей:

	Α	В	С
1	0	1	2
2	1/45	16/45	28/45

Рис. 1.18

Ответ:
$$P(X=0) = \frac{1}{45}$$
, $P(X=1) = \frac{16}{45}$, $P(X=2) = \frac{28}{45}$.

§2. Макросы для дискретных распределений

1. Макрос Discrete вычисляет автоматически математическое ожидание M[X], дисперсию D[X] и среднее квадратическое отклонение $s[X] = \sqrt{D[X]}$ таблично заданной дискретной случайной величины X. Для применения макроса надо ввести данные таблицы в первые две строки рабочего листа, начиная с ячейки A1, выделить диапазон с данными и запустить макрос на исполнение. Например, при выделенном диапазоне A1:D2, показанном на рис. 1.11, он возвращает полученные ранее результаты:

Рис. 1.19

Код макроса Discretel

```
Sub Discrete ()
Dim n As Integer, x() As Single, p() As Single,
m As Single, d As Single, s As Single
n = Selection.Columns.Count
ReDim x(1 To n)
ReDim p(1 To n)
m = 0: d = 0
For i = 1 To n
   x(i) = Cells(1, i).Value: p(i) = Cells(2, i).Value
   m = m + x(i) * p(i)
Next
For i = 1 To n
   d = d + (x(i) - m) ^ 2 * p(i)
Next
s = Sqr(d)
MsgBox ("1. M[X]=" & m & Chr(13) & "2. D[X]=" & d
& Chr(13) & "3. s[X]=" & s)
End Sub
```