
ВВЕДЕНИЕ

Рассматривается конечномерная механическая система, состо-
ящая из конечного числа материальных точек и конечного числа
твёрдых тел. Каждый представитель системы— точка или тело —
совершает движение и испытывает воздействие извне. Соответствен-
но, механика состоит из трёх разделов. Первый— кинематика—
изучает движение вне зависимости от причин его возникновения.
Второй— статика—изучает взаимодействие с внешней средой и ха-
рактеристики этого взаимодействия. В настоящем курсе раздел ста-
тики специально не выделен и вопросы, связанные с ним, подробно
не рассматриваются. Наконец, третий раздел— динамика— изуча-
ет связь движения и воздействия извне.
Механическая система движется в трёхмерном евклидовом про-

странстве— системе отсчёта. Предполагается, что есть возмож-
ность различать и именовать точки пространства.
Теоретическая механика строится аксиоматически. Некоторые

утверждения— аксиомы, постулаты, законы, начала — принимаются
за истину. Они будут формулироваться по мере необходимости.
Прочие утверждения следуют из аксиом (правильные) или аксиомам
противоречат (неправильные).
Отметим некоторые особенности курса. В разделе «Кинематика»

достаточно подробно обсуждены криволинейные координаты. В ки-
нематике твёрдого тела обращено внимание на то, что «элементар-
ной частицей» движения тела является чистое вращение. Рассмотре-
ны статико-кинематические аналогии, статический винт, кинемати-
ческий винт. Изложено кватернионное описание положения твёрдого
тела, введены параметры Родрига—Гамильтона и кинематические
уравнения в них. В разделе «Динамика» изложение основных за-
конов проведено одновременно в инерциальной и неинерциальной
системах отсчёта. Обсуждение движения под действием централь-
ных сил проделано как в потенциальном случае, так и в непо-
тенциальном. В динамике твёрдого тела приведена интерпретация
Пуансо, изучены свободная регулярная прецессия и вынужденная
регулярная прецессия, в том числе в случае Лагранжа.



4 Введение

Нестандартные обозначения объяснены в тексте.
Предполагается, что

• функции, участвующие в построениях,— достаточно гладкие;
• рассуждения, определения, утверждения— локальны.
Продолжение настоящего «Краткого курса теоретической ме-

ханики» в «Кратком курсе аналитической динамики» [15]. Автор
благодарит А. Р. Шакурова за помощь в оформлении.
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ГЛАВА 1

КИНЕМАТИКА ТОЧКИ

§1. ТРАЕКТОРИЯ, СКОРОСТЬ, УСКОРЕНИЕ

Определение 1.1. Материальная точка— геометрическая точ-
ка, которой поставлено в соответствие положительное число m—
масса.

В системе отсчёта (см. введение) фиксируется точка O, а положе-
ние материальной точки A в каждый момент времени t определяется
радиус-вектором r: начальная точка радиус-вектора r в точке
O, материальная точка A совпадает с конечной точкой r. Задать
движение материальной точки A— задать тем или иным способом
вектор-функцию r(t). Вектор-функция r(t) определяет три кинема-
тические характеристики движущейся точки: траекторию, скорость,
ускорение.

Определение 1.2. Траектория материальной точки— годограф
радиус-вектора r(t).

Введём геометрические характеристики траектории [13, § 22].
Фиксируем на траектории точку B, от которой вычисляется длина
дуги s, и направление положительного отсчёта дуги (рис. 1.1). Таким
образом, каждой точке A траектории ставится в соответствие число
s (положительное или отрицательное)— расстояние по траектории
между точками A и B. Радиус-вектор, проведённый к некоторой
точке траектории, также становится функцией длины дуги s: r(s).
По этой функции вычисляются орты сопровождающего трёх-
гранника.

s = −1
B

O

s

r A τ

C

n

s = 7

Рис. 1.1
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Орт касательной
τ = dr

ds
. (1.1)

Подчеркнём, что τ — орт:
(τ , τ ) = 1 (1.2)

(здесь и далее используются обозначения: ( , ) — скалярное произве-
дение векторов, [ , ] — векторное). Орт τ располагается на касатель-
ной к траектории и направлен в сторону увеличения длины дуги.

Орт нормали. Вводится вектор кривизны

K =
dτ

ds
=

d2r

ds2 , (1.3)

который характеризует скорость поворота орта касательной. Орт
нормали n— орт, задающий направление вектора кривизны:

K = dτ
ds = Kn = 1

ρn, K = 1
ρ . (1.4)

Вместо величины K кривизны удобно использовать радиус кри-
визны ρ— радиус окружности, аппроксимирующей траекторию
в данной точке (рис. 1.1). Центр C этой окружности называется
центром кривизны. Орт n направлен к центру кривизны C. Из
(1.2)–(1.4) следует ортогональность ортов τ и n:

0 =
d

ds
(τ , τ ) = 2(

dτ

ds
, τ ) = 2(K, τ ) = 2

1

ρ
(n, τ ).

Вместо термина «орт нормали» используется также термин «орт
главной нормали».

Орт бинормали b вводится так, чтобы три вектора {τ ,n,b}—
сопровождающий трёхгранник— представляли собой правый орто-
нормированный базис: b = [τ , n].

Одним из способов задания движения материальной точки—
r(t)—является задание траектории r(s) и движения по ней s(t).

Определение 1.3. Скорость материальной точки определяется
следующим образом

V =
dr

dt
= ṙ. (1.5)

Из формул (1.5) и (1.1) следует

V =
dr

dt
=

dr

ds

ds

dt
= τ

ds

dt
= V τ , (1.6)
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т.е., во-первых, скоростьV направлена по касательной к траектории,
во-вторых, величина скорости V равна производной по времени t от
пройденного пути:

V =
ds

dt
. (1.7)

Определение 1.3 скорости открывает возможность вычислять про-
изводные по времени от векторов a(t) разной природы.

Теорема 1.1 (А. Резаль, [1, 10]). Пусть A и B начальная и ко-
нечная точки вектора a(t) = AB. Справедлива следующая формула

da

dt
= ȧ = VB − VA. (1.8)

� Введём неподвижную в системе отсчёта точку O и отложим от
неё радиус-векторы rA и rB, проведённые к точкам A и B (рис. 1.2).
Утверждение (1.8) теоремы следует из определения 1.3 и формул

a = rB − rA, ȧ = ṙB − ṙA = VB − VA. �

Определение 1.4. Ускорение материальной точки определяется
следующим образом

W =
dV

dt
= V̇ =

d2r

dt2
= r̈. (1.9)

Из формул (1.6) и (1.9) следует

W =
dV

dt
=

d(V τ )

dt
=

dV

dt
τ + V

dτ

dt
.

Вычисления с учётом (1.4) и (1.7)
dτ

dt
=

dτ

ds

ds

dt
=

n

ρ
V

приводят к результату

W =
dV

dt
τ +

V 2

ρ
n = Wτ + Wn : (1.10)

A
OrA

rB

B

a(t)

Рис. 1.2
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разложению ускорения W по ортам сопровождающего трёхгранни-
ка. Компоненты разложения называются: Wτ — касательное или
тангенциальное ускорение, Wn — нормальное ускорение, —
и имеют величины

Wτ =
dV

dt
, Wn =

V 2

ρ
. (1.11)

Так как векторы τ и n ортогональны, справедливо равенство

W 2 = W 2
τ + W 2

n . (1.12)

§ 2. ДЕКАРТОВЫ КООРДИНАТЫ

Одна из возможностей именовать точки системы отсчёта (см. введе-
ние) — задание правого ортонормированного базиса: в пространстве
фиксируются такие четыре точки O, A1, A2, A3, что для базисных
векторов ik = OAk справедливо равенство

(ik, il) = δkl =
{

1, k = l,

0, k �= l.
(2.1)

«Фамилия, имя, отчество» произвольной точки B— коэффициенты
xk = (r, ik) разложения радиус-вектора r = OB по базису ik : r =

3∑
k=1

xkik (рис. 2.1). Далее числа x1, x2, x3 для краткости называются

декартовыми координатами (вместо «прямоугольные декартовы»).
С применением декартовых координат проиллюстрируем поня-

тия, введённые в § 1.

Пример 2.1. Точка P совершает движение по окружности радиуса
R (рис. 2.2). Положение точки определяет радиус-вектор r = CP =
R(i1 cosϕ + i2 sinϕ), где ϕ—угол между векторами r и i1. Длина
дуги ÔP равна s = Rϕ, откуда следует равенство ϕ = s/R. По

A3

A2

A1

i3

i1

i2

r
B

O

Рис. 2.1

RR

i2i2
n

ϕ

i1i1

PP
V

Wn

Wτ

τ

CC

Рис. 2.2
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формуле (1.1) вычисляется орт касательной

τ =
dr

ds
=

dr

dϕ

dϕ

ds
= −i1 sin ϕ + i2 cosϕ.

По формуле (1.3) вычисляется вектор кривизны

K =
dτ

ds
=

dτ

dϕ

dϕ

ds
= − 1

R
(i1 cosϕ + i2 sin ϕ) = − 1

R
n,

откуда следуют выражения для радиуса кривизны ρ и орта норма-
ли n:

ρ = R, n = −(i1 cosϕ + i2 sin ϕ).

По формуле (1.5) скорость точки равна

V = ṙ = Rϕ̇(−i1 sinϕ + i2 cosϕ) = Rϕ̇τ ,

а величина скорости при движении точки по окружности равна V =
Rϕ̇. По формуле (1.9) ускорение точки равно

W = V̇ = Rϕ̈(−i1 sin ϕ + i2 cosϕ) − Rϕ̇2(i1 cosϕ + i2 sin ϕ) =

= Rϕ̈τ + Rϕ̇2n,

а величины касательного и нормального ускорений при движении
точки по окружности равны Wτ = Rϕ̈, Wn = Rϕ̇2.

§3. КРИВОЛИНЕЙНЫЕ (ОБОБЩЁННЫЕ) КООРДИНАТЫ

Положение материальной точки в системе отсчёта определяется по-
ложением радиус-вектора r, начальная точка которого неподвижна,
а конечная точка совпадает с материальной точкой. Положение
точки в трёхмерном пространстве можно задавать тремя числами:
r(q1, q2, q3).

Определение 3.1. Числа q1, q2, q3 называются криволинейными
(обобщёнными) координатами при выполнении двух условий.

1. Три числа q1, q2, q3 находятся в взаимно однозначном соответ-
ствии с любым положением точки в системе отсчёта.
2. Фиксируем точку q0

1, q0
2, q0

3 в системе отсчёта. Две координаты
q0
2, q0

3 оставим фиксированными, а одной координате q1 дозволим
изменяться. Конечная точка радиус-вектора r(q1, q0

2, q0
3) прочертит

кривую, которая называетсякоординатной линией, соответствую-
щей координате q1 (рис. 3.1). ВекторH1(q) = ∂r(q)/∂q1 — касатель-
ный вектор к координатной линии (здесь и в подобных случаях
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r(q0
1 , q0

2 , q0
3)

q0
1 , q0

2 , q0
3

H1(q
0
1 , q0

2 , q0
3)

P

Рис. 3.1

используется обозначение q = (q1, q2, q3)). Аналогично строятся
другие координатные линии и касательные векторы к ним

Hi(q) =
∂r(q)

∂qi
. (3.1)

Второе условие требует линейную независимость касательных век-
торов H1(q), H2(q), H3(q) в каждой точке q системы отсчёта.
При выполнении условий 1 и 2 три вектора H1(q), H2(q), H3(q)

образуют в каждой точке системы отсчёта локальный базис, соот-
ветствующий конкретным криволинейным координатам. Скалярные
функции

Hi(q) = |Hi(q)| (3.2)

называются коэффициентами Ламе. Криволинейные координа-
ты, для которых выполняется

(Hi, Hk) = 0, i �= k, (3.3)

называются ортогональной системой координат.
Задать движение r(t) материальной точки в криволинейных

координатах это, во-первых, задать связь r(q) положения точки
в системе отсчёта с координатами q, во-вторых, задать изменение
координат q(t) во времени t. Если обе зависимости заданы, скорость
точки равна

V(q, q̇) =
dr(q)

dt

3∑
i=1

∂r(q)

∂qi
q̇i =

3∑
i=1

Hi(q)q̇i (3.4)

— использовано обозначение (3.1). Для величины скорости из (3.4)
следует

V 2(q, q̇)) = (V, V) =
3∑

i, k=1

(Hi(q), Hk(q)) q̇iq̇k. (3.5)

Для ортогональных систем координат (см. (3.2), (3.3)) формула (3.5)
упрощается:

V 2(q, q̇)) =
3∑

i=1

H2
i (q)q̇2

i . (3.6)
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Из выражения (3.4) следует
∂V

∂q̇i
=

∂r

∂qi
(3.7)

(qi и q̇i —независимые переменные). Выражение (3.4) влечёт также
формулу

∂V

∂qi
=

d

dt

∂r

∂qi
, (3.8)

для обоснования которой сравнивается результат вычисления про-
изводной по t в правой части формулы (3.8) с результатом диффе-
ренцирования по qk выражения (3.4).

С учётом обозначений (1.9), (3.1), формул (3.7), (3.8) и правила
дифференцирования произведения выведем соотношение

(Hi, W) =
d

dt

∂

∂q̇i

(
V 2(q, q̇)

2

)
− ∂

∂qi

(
V 2(q, q̇)

2

)
(3.9)

для ускорения W точки:

(Hi, W) =
(

∂r

∂qi
,

dV

dt

)
=

d

dt

(
∂r

∂qi
, V
)

−
(

d

dt

∂r

∂qi
, V
)

(3.7),(3.8)
=

=
d

dt

(
∂V

∂q̇i
, V
)

−
(

∂V

∂qi
, V
)

=
d

dt

∂

∂q̇i

(
V 2

2

)
− ∂

∂qi

(
V 2

2

)
.

Последний переход есть результат очевидных вычислений (z — неко-
торая переменная):(

∂V

∂z
, V
)

=
1

2

∂

∂z
(V, V) =

∂

∂z

(
V 2

2

)
.

В частности, если обе части второго закона Ньютона mW = F
(§ 15) умножить скалярно на вектор Hi, ввести обозначения для
кинетической энергии T (q, q̇) = mV 2(q, q̇)/2 и для обобщённой
силыQi = (F, Hi) = (F, ∂r/∂qi), то с учётомформулы (3.9) получим
уравнения Лагранжа

d

dt

∂T

∂q̇i
− ∂T

∂qi
= Qi (3.10)

для свободной материальной точки.
Формула (3.9) определяет также проекцию ускорения W на

касательную к координатной линии

1

Hi
(Hi, W) =

1

Hi

{
d

dt

∂

∂q̇i

(
V 2(q, q̇)

2

)
− ∂

∂qi

(
V 2(q, q̇)

2

)}
. (3.11)
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Для ортогональной системы координат (см. (3.3)) выражения (3.11)

есть коэффициенты Wi разложения ускорения W =
3∑

i=1

Wiei по

ортам ei, связанным с касательными к координатным линиям.
Проиллюстрируем введённые в этом параграфе понятия на при-

мере.

Пример 3.1. На рис. 3.2 положение точки P определено цилиндри-
ческими координатами r, ϕ, z. Радиус-вектор раскладывается по
ортонормированному базису i, j, k следующим образом:

r = ir cosϕ + jr sin ϕ + kz. (3.12)

В соответствии с формулами (3.1) и (3.2) вычисляются векторы,
касательные к координатным линиям, и коэффициенты Ламе:

Hr =
∂r

∂r
= i cosϕ + j sin ϕ, Hr = 1,

Hϕ =
∂r

∂ϕ
= −ir sinϕ + jr cosϕ, Hϕ = r,

Hz =
∂r

∂z
= k, Hz = 1.

По формуле (3.4) скорость точки, движение которой задано цилин-
дрическими координатами r(t), ϕ(t), z(t), равна

V = Hr ṙ + Hϕϕ̇ + Hz ż.

Вычисления (Hr, Hϕ) = 0, (Hr, Hz) = 0, (Hz , Hϕ) = 0 приводят
к выводу (см. (3.3)): цилиндрические координаты являются орто-
гональными, вследствие чего величина скорости вычисляется по
формуле (3.6):

V 2 = ṙ2 + r2ϕ̇2 + ż2.

x
y

z

k j

r

ϕ

z

P

i
r

Рис. 3.2
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Учёт этого результата в соотношении (3.9) определит левые части
уравнений Лагранжа (3.10):

m(Hr, W) = m(r̈ − rϕ̇2), m(Hϕ, W) = m(r2ϕ̈ + 2rṙϕ̇),
m(Hz , W) = mz̈

(3.13)

и проекции ускорения W на касательные к координатным линиям
(см. (3.11)):

Wr = (Hr, W) = r̈ − rϕ̇2, Wϕ = (Hϕ, W)/r = rϕ̈ + 2ṙϕ̇,

Wz = (Hz , W) = z̈.




