

Г.Л. МАРШАНОВА

СБОРНИК АВТОРСКИХ ЗАДАЧ ПО ХИМИИ

Общая, неорганическая и органическая химия

8-11 классы

Издание второе

Издание допущено к использованию в образовательном процессе на основании приказа Министерства образования и науки $P\Phi$ от $09.06.2016 \ New 699$.

Автор — Маршанова Галина Леонидовна — учитель химии с 30-летним стажем, канд. пед. наук, заслуженный учитель Российской Федерации, отличник народного просвещения, соросовский учитель, лауреат «Гранта Москвы» в области наук и технологий в сфере образования,

в области наук и технологий в сфере образования, автор более 40 публикаций по методике преподавания химии.

Рецензенты:

главный научный сотрудник Института содержания и методов обучения Российской академии образования, доктор пед. наук, канд. хим. наук, профессор Γ .В. Π ичугина; учитель высшей квалификационной категории Γ БОУ ЦО № 57 г. Москвы E.H. Стрельникова.

Маршанова Г.Л.

М30 Сборник авторских задач по химии. 8-11 классы. -2-е изд. - М.: ВАКО, 2018.-160 с.

ISBN 978-5-408-03782-7

Данный сборник задач — это обновленная версия известного школьникам и учителям химии пособия «500 задач по химии + 200 задач». Сборник содержит примеры оформления и решения типовых задач, разнообразные справочные материалы, что позволит учащимся при необходимости самостоятельно научиться решать расчетные задачи.

Пособие окажет существенную помощь ученикам при подготовке к олимпиадам и итоговой аттестации по химии в формате ГИА-9 и ЕГЭ и школьному учителю при отборе задач для дифференцированного домашнего задания, проведении факультативных занятий.

УДК 372.854 ББК 24.1я72

Предисловие

Данное пособие Г.Л. Маршановой хорошо известно школьникам, изучающим химию, школьным учителям химии, абитуриентам, преподавателям колледжей и вузов под названием «500 задач по химии + 200 задач».

Автор посчитала целесообразным сохранить в настоящем издании задачи, которые предлагались на вступительных экзаменах в разные вузы г. Москвы еще до введения экзамена по химии в формате ЕГЭ. Думается, что это оправданный шаг, ведь пособие многие годы используется учащимися и учителями как хороший тренажер при подготовке к разным этапам (начиная со школьного и межшкольного) Всероссийской олимпиады по химии. Кроме этого, задачи, представленные в данном сборнике, по содержанию и степени сложности вполне соответствуют расчетным задачам, предлагаемым на Едином государственном экзамене по химии и экзамене по химии в формате ОГЭ. Иными словами, школьный учитель без труда подберет для своих учеников соответствующее задание, формирующее и развивающее умения и навыки решения расчетных задач, как в качестве традиционного (в том числе и дифференцированного) домашнего задания, так и для факультативных и элективных курсов и подготовки к сдаче экзамена по химии в 9 и 11 классах.

Автор выражает признательность всем учителям и учащимся, высказавшим свои замечания и предложения, которые были учтены при подготовке данного издания.

Памятка для учащегося

Физические величины, используемые при решении задач

Наименование величин	Единицы измерения	Обозна- чение	Форма записи
Количество вещества	моль	ν (ню)*	$V(H_2S) = 1,6$ моль
Масса вещества	мг, г, кг	m	m(CaO) = 60 кг
Молярная масса	г/моль, кг/моль	M	$M({ m CO}_2)$ = 44 г/моль $M({ m Ca})$ = 0,04 кг/моль
Молярный объем	л/моль, м ³ /моль	$V_{ m m}$	$V_{ m m}$ = 22,4 л/моль = = 22,4 \cdot 10 ⁻³ м ³ /моль
Объем вещества, раствора	л, м ³ , мл	V	$V(H_2) = 10 \pi$ $V(HCl) = 0,2 \text{ м}^3$
Плотность ве- щества, раствора	г/мл, г/см ³ , кг/м ³	ρ (po)	$ ho(H_2O) = 1 \text{ г/мл}$ $ ho(KOH) = 1062 \text{ кг/м}^3$
Относительная плотность	Безразмер- ная	D	$D_{\rm H_2}\!=22$
Относительная атомная масса	Безразмер- ная	$A_{ m r}$	$A_{\rm r}({\rm Ca}) = 40$ $A_{\rm r}({\rm C}) = 12$
Относительная молекулярная масса	Безразмер- ная	$M_{ m r}$	$M_{\rm r}({ m CaO}) = 56$ $M_{\rm r}({ m O}_2) = 32$
Массовая доля растворенного вещества, элемента в соединении	Безразмер- ная или в %	ω (омега)	ω(KOH) = 0,45 ω(C) = 80%
Выход вещества	Безразмер- ная или в %	η (эта)	$\eta(\mathrm{NH_3}) = 25\%$
Объемная доля газа в смеси	Безразмер- ная или в %	ф (фи)	φ(CH ₄) = 0,98 или 98%

^{*} В системе СИ количество вещества обозначается латинской буквой n (эн). В школьной практике распространено обозначение греческой буквой ν (ню).

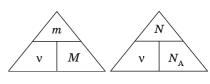
Физические константы, используемые при решении задач

Абсолютный нуль температуры –273 °C	Π остоянная Авогадро $6.02\cdot 10^{23}~{ m моль}^{-1}$
Нормальная атмосфера 760 мм рт. ст., или 101 325 Па	Универсальная газовая постоянная $8,31~\rm{Д}$ ж · моль $^{-1}$ · \rm{K}^{-1} или $0,082~\rm{n}$ · атм · моль $^{-1}$ · град $^{-1}$
Постоянная Фарадея $9,65\cdot 10^4~{ m Kn}\cdot { m моль}^{-1}$	Стандартный молярный объем идеального газа при н. у. $(0^{\circ}\text{C},1\text{атм})22,4\cdot10^{-3}\text{м}^{3}\cdot\text{моль}^{-1}$

Общие формулы для решения задач по химии

Количество вещества. Молярная масса. Число Авогадро

 $M_r = \sum n \cdot A_r$, где n – число атомов в молекуле (индекс)


M численно равна M_{-}

[M] = Γ /моль или к Γ /моль

V – количество вещества

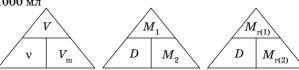
[v] = моль

$$\omega(\vartheta) = \frac{n \cdot A_{\rm r}(\vartheta)}{M_{\rm r}} \cdot 100\%$$

N – число структурных частиц $N_{\Lambda} = 6,02 \cdot 10^{23} \text{ моль}^{-1}$

Газы: законы, правила, константы

 $V_{\rm m} = 22.4 \ {\rm \pi/моль} = 0.0224 \ {\rm m}^3/{\rm моль}$ (н. у.)


 $\stackrel{\text{m}}{M_{\rm r}}$ (газа) = $M_{\rm r}$ (H $_2$) · $D_{\rm H}_2$ = $2 \cdot D_{\rm H}_2$ $M_{\rm r}$ (газа) = $M_{\rm r}$ (возд.) · D(возд.) = $29 \cdot D$ (возд.)

 $M(\text{газа}) = V_{\text{m}} \cdot \rho(\text{газа}) = 22,4 \text{ л/моль} \cdot \rho (\text{г/л}) \text{ (в расчете на н. у.)}$

D – относительная плотность газов

 $1 \text{ м}^3 = 1000 \text{ л}$

 $1 \pi = 1000 \text{ мл}$

Правило объемных	Уравнение Менделеева –
отношений газов	Клапейрона
$\frac{V_1}{V_1} = \frac{V_1}{V_1}$	$PV = \frac{m}{2}RT$
V_2 $^ v_2$	M
Закон Бойля – Мариотта	Закон Шарля
$P = V_1$	$P = P_1$
$P_1 - V$	$T - T_1$

Закон Гей-Люссака

$$\frac{V}{T} = \frac{V_1}{T_1}$$

$rac{P_0 \cdot V_0}{T_0} = rac{P \cdot V}{T}$

R = 8,31 Дж / (моль · К) = 0,082 л · атм / (моль · К)

Растворы

 $\rho(H_2O) = 1000 \text{ кг/м}^3 = 1 \text{ г/мл} = 1 \text{ г/см}^3$

С – молярная концентрация

 $[C] = \text{моль}/\pi$

V – количество вещества

[v] = моль

Разбавление

$m_{\text{p.B.}} = \text{const}$ m = m + m(H)

$$m_{\text{p-pa(2)}} = m_{\text{p-pa(1)}} + m(\text{H}_2\text{O})_{\text{добавл.}}$$

 $\omega_{\text{D.B.}} \downarrow$

Упаривание

$$m_{\rm p.b.} = {
m const}$$

$$m_{\text{p-pa}(2)} = m_{\text{p-pa}(1)} - m(\text{H}_2\text{O})_{\text{выпар.}}$$
 $\omega_{\text{D.B.}} \uparrow$

Выход продукта реакции

 $\eta = 100\% - \%$ потерь = 1 - доля потерь

Смеси и примеси

 $\omega_{_{^{\mathrm{H},B}}}=100\%-\%$ примесей = 1- доля примесей $\phi_{_{^{\mathrm{H},B}}}=100\%-\%$ примесей = 1- доля примесей

РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ

I. Вычисления по химическим формулам

Xимическая формула — это условная запись состава вещества посредством химических знаков и индексов.

Задача № 1. Вычислите относительную молекулярную массу метана CH_4 и отношение масс (массовое отношение) элементов в этом веществе.

Ответ:
$$M_r(CH_4) = 16$$
; $m(C) : m(H) = 3 : 1$.

Задача № 2. Вычислите массовые доли (в %) элементов в глюкозе $C_6H_{12}O_6$.

Дано:	Решение:
$C_6H_{12}O_6$	Для вычисления массовой доли хими-
ω(C) = ? $ω(H) = ?$ $ω(O) = ?$	ческого элемента в сложном веществе применим формулу $\omega(\mathfrak{I}) = \frac{n \cdot A_{\rm r}(\mathfrak{I})}{M_{\rm r}} \cdot 100\%, \text{где} n - \text{число ато-}$
	мов элемента в молекуле (индекс).

1) Вычислим относительную молекулярную массу глюкозы:

$$\begin{split} &M_{\rm r}({\rm C_6H_{12}O_6}) = 6 \cdot A_{\rm r}({\rm C}) + 12 \cdot A_{\rm r}({\rm H}) + 6 \cdot A_{\rm r}({\rm O}); \\ &M_{\rm r}({\rm C_6H_{12}O_6}) = 6 \cdot 12 + 12 \cdot 1 + 6 \cdot 16 = 72 + 12 + 96 = 180. \end{split}$$

2) Вычислим массовые доли углерода, водорода и кислорода в глюкозе:

$$\omega(C) = \frac{6 \cdot 12}{180} = 0,4$$
, или $40,0\%$;

$$\omega(H) = \frac{12 \cdot 1}{180} = 0,067$$
, или 6,7%; $\omega(O) = \frac{6 \cdot 16}{180} = 0,533$, или 53,3%.

OTBET:
$$\omega(C) = 40,0\%$$
, $\omega(H) = 6,7\%$, $\omega(O) = 53,3\%$.

Задача № 3. Вычислите, какая масса углерода содержится в образце этана С₂Н₆ массой 90 г.

Дано:

$$m(C_2H_6) = 90$$
 г
 Решение:

 1) $M_r(C_2H_6) = 2 \cdot A_r(C) + 6 \cdot A_r(H)$;

 $m(C) = ?$
 $M_r(C_2H_6) = 2 \cdot 12 + 6 \cdot 1 = 30$.

Известно, что числовые значения относительной молекулярной и молярной масс равны. Следовательно, $M(\mathrm{C_2H_6}) = 30$ г/моль. Значит, в 30 г этана на долю углерода приходится 24 г, а на долю водорода -6 г.

2) Если в 30 г этана содержится 24 г углерода, то тогда в 90 г этана содержится x г углерода. Составим пропорцию и решим ее:

$$\frac{30 \ \Gamma}{24 \ \Gamma} = \frac{90 \ \Gamma}{x \ \Gamma}$$
, отсюда $x = 72$; $m(C) = 72 \ \Gamma$.

Ответ: m(C) = 72 г.

Задача № 4. Вычислите, в какой массе оксида фосфора (III) P_9O_3 содержится 6.2 г фосфора.

Дано:
$$P_2O_3$$

 $m(P)=6,2$ г P е шение:
 $1)$ $M_r(P_2O_3)=2\cdot A_r(P)+3\cdot A_r(O);$
 $M_r(P_2O_3)=2\cdot 31+3\cdot 16=110.$
Известно, что числовые значения относительной молекулярной и молярной масс равны.

Следовательно, $M(P_2O_3)=110$ г/моль. Значит, в 110 г оксида фосфора (III) на долю фосфора приходится 62 г, а на долю кислорода — 48 г.

2) Если в 110 г P_2O_3 содержится 62 г фосфора, то тогда в x г P_2O_3 содержится 6,2 г фосфора. Составим пропорцию и решим ее:

$$\frac{110 \ \Gamma}{62 \ \Gamma} = \frac{x \ \Gamma}{6,2 \ \Gamma}$$
, отсюда $x = 11$; $m(P_2O_3) = 11 \ \Gamma$. Ответ: $m(P_2O_3) = 11 \ \Gamma$.

II. Задачи на вывод химических формул

Задача № 5. Определите химическую формулу вещества, в состав которого входят 5 массовых частей кальция и 3 массовые части углерода.

Дано: $Ca_{v}C_{v}$

m(Ca): m(C) = 5:3 Для установления химической формулы вещества необходимо определить значения индексов.

 $Ca_{x}C_{y}$, где x, y – индексы. Тогда m(Ca) = 40x, m(C) = 12y, где 40 и 12 — относительные атомные массы кальция и углерода соответственно.

На основе закона постоянства состава вещества можем записать:

$$40x: 12y = 5:3,$$
 отсюда $x: y = \frac{5}{40}: \frac{3}{12};$

$$x: y = 0,125:0,25;$$

$$x: y = 1:2;$$

$$x = 1, y = 2.$$

Следовательно, формула вещества СаС₂.

Ответ: СаС₂.

Задача № 6. Определите молекулярную формулу вещества, если известно, что массовая доля углерода в нем равна 40.0% водорода -6.67%, кислорода -53.33%. Плотность паров этого вещества по углекислому газу равна 1,364.

Дано: $\omega(C) = 40.0\%$ $\omega(H) = 6.67\%$ $\omega(O) = 53,33\%$ $D_{\text{CO}_2} = 1,364$ $C_{u}H_{u}O_{u}$

Решение:

1) Для установления химической формулы вещества необходимо определить значения индексов.

 $C_{y}H_{y}O_{z}$, где x, y, z – индексы. Тогда m(C) = 12x, m(H) = 1y, m(O) = 16z, где 12, 1, 16 – относительные атомные массы углерода, водорода и кислорода соответственно.

2) Установим простейшую формулу вещества и вычислим для нее относительную молекулярную массу.

На основе закона постоянства состава вещества можем записать:

$$12x:1y:16z=40,0:6,67:53,33,$$
 отсюда $x:y:z=\frac{40,00}{12}:\frac{6,67}{1}:\frac{53,33}{16};$

$$x: y: z = 3,33:6,67:3,33;$$

$$x:y:z=1:2:1.$$

Следовательно, простейшая формула ${
m CH_2O}$. $M_{
m r}({
m CH_2O})$ = 30.

3) Вычислим значение относительной молекулярной массы искомого вещества по формуле:

$$M_{\rm r}$$
(истин.) = $M_{\rm r}$ (CO $_2$) · $D_{{\rm CO}_2}$; $M_{\rm r}$ (истин.) = $44 \cdot 1,364 = 60$.

4) Сравним значения относительных молекулярных масс – истинной и определенной, по простейшей формуле:

$$\frac{M_{\rm r}({\rm истин.})}{M_{\rm r}({\rm CH_2O})} = \frac{60}{30} = 2.$$

Значит, индексы в истинной формуле будут в 2 раза больше, чем в простейшей формуле, то есть x=2, y=4, z=2. Следовательно, формула искомого вещества $\mathrm{C_2H_4O_2}$.

Ответ:
$$C_2H_4O_2$$
.

Задача № 7. При сгорании 10,5 г органического вещества получили 16,8 л углекислого газа (н. у.) и 13,5 г воды. Плотность этого вещества при н. у. равна 1,875 г/л. Определите молекулярную формулу вещества.

$$\mathcal{H}$$
 а н о: $m(C_xH_yO_z) = 10.5 \ \Gamma$ $V(CO_2) = 16.8 \ \pi$ $m(H_2O) = 13.5 \ \Gamma$ $\rho(C_xH_yO_z) = 1.875 \ \Gamma/\pi$ $C_xH_yO_z$

Решение:

Для установления химической формулы вещества необходимо определить значения индексов. $C_xH_yO_z$, где x, y, z — индексы. Тогда m(C) = 12x m(H) = 1u m(O) = 16z

 C_x Π_y O_z , где x, y, z – индексы. Гогда m(C) = 12x, m(H) = 1y, m(O) = 16z, где 12, 1, 16 – относительные атомные массы углерода, водорода и кислорода соответственно.

1) Образование углекислого газа при горении указывает на наличие в исходном веществе атомов углерода. Вычислим массу углерода в исходном образце, для чего составим схему: