
YOUR KNOWLEDGE HAS VALUE

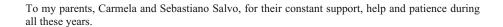
- We will publish your bachelor's and master's thesis, essays and papers
- Your own eBook and book sold worldwide in all relevant shops
- Earn money with each sale

Upload your text at www.GRIN.com and publish for free

A LOW-POWER ANALOGUE SC-CMOS FILTER SUITABLE TO IMPLEMENT THE WAVELET ALGORITHM TO ANALYSE ECG SIGNALS IN PACEMAKERS

Pietro Salvo

This book is the revised and corrected version of the thesis submitted in October 2004 to the faculty of Engineering at University of Pisa, Italy, in partial fulfilment of the requirements for the degree


Master of Science
in Electronics Engineering.

Contents

Contents	iii
Acknowledgments	v
Introduction	1
Chapter I	
Evaluation of the filter expression in s-domain and z-domain	4
1.1) Laplace transform and Padè approximation	4
1.2) Impulse invariance technique	8
Chapter II	
Filter optimization – dynamic range analysis	12
2.1) State-Space realization	12
2.2) State-Space optimization	15
2.3) Hessenberg and Schur decompositions	18
2.4) Optimal capacitance distribution	20
Chapter III	
Comparison of discrete and continuous time approaches	21
3.1) State-Space realization in continuous time	21
Chapter IV	
Circuital realization of the filter	24
4.1) Synthesis of the state-space filter	24
4.2) Filter settings	26
4.3) First approach to the circuit	28
4.4) Impulse transient response of the circuit with ideal amplifiers	31
4.5) Step transient response of the circuit with ideal amplifiers	33
4.6) Sine transient response of the circuit with ideal amplifiers	34
4.7) Clock feedthrough	35
Chapter V	
Two-stage CMOS operational amplifier	37
5.1) Two-stage CMOS operational amplifier topology	37
5.2) Analysis of the amplifier	38
5.3) Frequency compensation	41
5.4) Integrator bandwidth	43
5.5) Considerations on the amplifier	46

5.6) Calculus of the transconductance by noise-optimisation	48
5.7) Calculus of the biasing current and design of the amplifier	49
Chapter VI	
Final schematic of the wavelet filter	51
6.1) Transmission gate and dummy gate	51
6.2) Impulse transient response	54
6.3) Step transient response	55
6.4) Sine transient response	56
6.5) Power consumption	56
6.6) Noise analysis	57
Chapter VII	
Considerations on the wavelet filter	59
References	61

Acknowledgments

To my supervisors W. A. Serdijn and S. A. P. Haddad, for receiving me very well in Delft, for their constant help and important advising.

Introduction

The *QRS complex* represents ventricular depolarization and consists of three waveforms. The normal complex begins with a downward deflection known as the Q wave, followed by an upward deflection called the R wave. The next downward deflection will be the S wave. All ventricular complexes are known as QRS complexes even if every wave is not present in all complexes. The normal human QRS complex lasts about 0.04 to 0.11 seconds and its waveform can be seen in Fig. 1, which shows a typical external electrocardiogram (ECG).

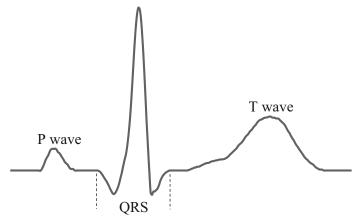


Fig. 1. Example of a typical external electrocardiogram.

The detection of the QRS complex is very important because it is related to different heart dysfunctions such as:

- Nonspecific intraventricular conduction delay
- Some cases of left anterior or posterior fascicular block
- Incomplete right or left bundle branch block
- Ectopic rhythms originating in the ventricles (e.g., ventricular tachycardia, pacemaker rhythm)
- Presence of necrotic heart tissue
- Ventricular hypertrophy

The wavelet transformation [1] is a very promising tool to characterize non-stationary signals such as the QRS complex because it gives good estimation of time and frequency localization. In fact, the analysis of the signal is performed at various resolutions and accomplished by decomposition