MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

FORB.SC(COMPUTERSCIENCE), B.C.A, M.C.A AND ALL COMPUTER SCIENCE COURSES

PUSHPALATHA RAMESH

Copyright © 2014 by Pushpalatha Ramesh.

ISBN:	Softcover	978-1-4828-3594-6
	eBook	978-1-4828-3593-9

All rights reserved. No part of this book may be used or reproduced by any means, graphic, electronic, or mechanical, including photocopying, recording, taping or by any information storage retrieval system without the written permission of the publisher except in the case of brief quotations embodied in critical articles and reviews.

Because of the dynamic nature of the Internet, any web addresses or links contained in this book may have changed since publication and may no longer be valid. The views expressed in this work are solely those of the author and do not necessarily reflect the views of the publisher, and the publisher hereby disclaims any responsibility for them.

To order additional copies of this book, contact Partridge India 000 800 10062 62 orders.india@partridgepublishing.com

www.partridgepublishing.com/india

Dedicated to my Husband M.Ramesh and my lovely Daughters R.Vainavi R.Vibhavi for their love, support and guidance.

PREFACE

The Subject Mathematical Foundation of Computer Science is gaining importance in the curriculum of Engineering, especially Computer Science and Information Technology subjects. This book is the outcome of my teaching experience. This text contains six chapters.

Chapter I Matrices which contains its types, Basic Operations in Matrix, Determinants, Properties of Determinants, Inverse of a Matrix, Rank of Matrix, Characteristics Roots (or) Eigen Values and Eigen Vectors and Cayley - Hamilton Theorem.

Chapter II Set Theory includes, Definition, Basic Set Operations and Laws of Set Theory, Relations, Types of Relations, Representation of Relations in Matrix Form, Composition of Relations, Functions, Types of Functions and Principle of Mathematical Induction.

Chapter III Boolean Algebra contains Definition, Karnaugh Map, Sum of Product and Product of Sum.

Chapter IV Mathematical Logic covers Introduction, Connectives, Derived Connectives, Conditional Propositions, Conditional Statement, Bi-Conditional Statement, Order of Precedence for Logical Connectives, Converse, Inverse and Contra Positive Propositions, Tautologies and Contradictions, Equivalence of Formulae, Tautological Implications, Normal Forms, Principal Disjunctive Normal Form (PDNF), Principal Conjunctive Normal Form (PCNF), Indirect Method of Proof, Predicate Calculus, Bound and Free Variables and Inference Theory for Predicate Calculus.

Chapter V Graph Theory includes Graphs, Diagraph, Types of Graph, Definitions of Paths, Reachability and Connectedness, Matrix Representation of Graphs, Shortest Path in a Weighted Graph Algorithm, Shortest Path in a Graph without Weights, Traveling Salesman Problem, Binary Trees, Traversals of Binary Trees and Expression Trees.

Chapter VI Grammars And Language covers PSG (Phrase Structure Grammar), Types of Grammars, Productions, Derivation Tree, Left Most and Right Most Derivations, Finite State Automata (FSA), Deterministic Finite Automata (DFA), Non-Deterministic Finite-State Automata, Procedure for Converting NFA to DFA.

This edition is developed as per the syllabus of the M.C.A. It suits the needs of the B.Sc (Computer Science), B.C.A., M.C.A. and M.Sc curriculum of various universities.

Suggestions for improvements of the book shall be gratefully acknowledged.

Pushpalatha Ramesh

CONTENTS

		Page
CHAP	TER - I	1-86
1. MAT	TRICES	
1.1	Definition	 1
1.2	Types of Matrices	 2
1.3	Basic Operations in Matrix	 9
1.4	Determinants	 19
1.5	Properties of Determinants	 28
1.6	Inverse of a Matrix	 61
1.7	Rank of Matrix	 64
1.8	Characteristics Roots (or) Eigen Values and Eigen Vectors	 67
1.9	Cayley-Hamilton Theorem	 82
CHAP	FER - II	87-187
2. SET	THEORY	
2.1	Definition	 88
2.2	Basic Set Operations and Laws of Set Theory	 98
2.3	Relations	 124
2.4	Types of Relations	 128
2.5	Representation of Relations in Matrix Form	 134
2.6	Composition of Relations	 147
2.7	Functions	 154
2.8	Types of Functions	 160
2.9	Principle of Mathematical Induction	 176
CHAP	FER - III	188-197
3. BOO	LEAN ALGEBRA	
3.1	Definition	 188
3.2	Karnaugh Map	 191
3.3	Sum of Product	 196
3.4	Product of Sum	 197
CHAP	FER - IV	198-267
4. MAT	THEMATICAL LOGIC	
4.1	Introduction	 198
4.2	Connectives	 199
4.3	Derived Connectives	 205
4.4	Conditional Propositions	 209

4.5	Conditional Statement	 216
4.6	Bi-Conditional Statement	 218
4.7	Order of Precedence for Logical Connectives	 222
4.8	Converse, Inverse and Contra Positive Propositions	 224
4.9	Tautologies and Contradictions	 225
4.10	Equivalence of Formulae	 230
4.11	Tautological Implications	 235
4.12	Normal Forms	 242
4.13	Principal Disjunctive Normal Form (PDNF)	 243
4.14	Principal Conjunctive Normal Form (PCNF)	 247
4.15	Indirect Method of Proof	 252
4.16	Predicate Calculus	 258
4.17	Bound and Free Variables	 265
4.18	Inference Theory for Predicate Calculus	 266

CHAPTER - V

5. GRAPH THEORY

268-305

5.1	Graphs	 268
5.2	Diagraph	 269
5.3	Types of Graph	 270
5.4	Definitions of Paths, Reachability and Connectedness	 281
5.5	Matrix Representation of Graphs	 284
5.6	Shortest Path in a Weighted Graph Algorithm	 289
5.7	Shortest Path in a Graph without Weights	 295
5.8	Traveling Salesman Problem	 298
5.9	Binary Trees	 300
5.10	Traversals of Binary Trees and Expression Trees	 302
5.11	Infix, Postfix and Prefix Expressions	 303

CHAPTER - VI

306-353

MMARS AND LANGUAGE		
PSG (Phrase Structure Grammar)		306
Types of Grammars		308
Productions		312
Derivation Tree		315
Left Most and Right Most Derivations		319
Finite State Automata (FSA)		324
Deterministic Finite Automata (DFA)		325
Non-Deterministic Finite-State Automata		343
Procedure for Converting NFA to DFA		348
	Types of Grammars Productions Derivation Tree Left Most and Right Most Derivations Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non-Deterministic Finite-State Automata	PSG (Phrase Structure Grammar)Types of GrammarsProductionsDerivation TreeLeft Most and Right Most DerivationsFinite State Automata (FSA)Deterministic Finite Automata (DFA)Non-Deterministic Finite-State Automata